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Magnitude and Extent of Sediment Toxicity in Four
Bays of the Florida Panhandle: Pensacola,
Choctawhatchee, St. Andrew and Apalachicola.

Edward R. Long (NOAA), Gail M. Sloane (FDEP), R. Scott Carr, Tom Johnson, and James Biedenbach
(NBS), K. John Scott and Glen B. Thursby (SAIC), Eric Crecelius and Carole Peven (Battelle),

Herbert L. Windom, Ralph D. Smith and B. Loganathon (Skidaway)

ABSTRACT

The toxicity of sediments in Pensacola, Choctawhatchee, St. Andrew and Apalachicola Bays was determined as
part of bioeffects assessments performed by NOAA's National Status and Trends Program. The objectives of the
survey were to determine: (1) the spatial patterns in toxicity throughout each bay, (2) the spatial extent of toxicity
throughout and among the bays, (3) the severity or degree of toxicity, and (4) the relationships between chemi-
cal contamination and toxicity. The survey was conducted over two years: Pensacola Bay and St. Andrew Bay
were sampled in 1993; and Choctawhatchee Bay, Apalachicola Bay and Bayou Chico (a sub-basin of Pensacola
Bay) were sampled during 1994.

Surficial sediment samples were collected from 123 randomly-chosen locations throughout the five areas. Mul-
tiple toxicity tests were conducted on all samples, and chemical analyses were performed on 102 of the 123
samples.

Toxicological tests were conducted to determine survival, reproductive success, morphological development,
metabolic activity, and genotoxicity; all bays showed toxicity in at least some of the samples. Toxicity was most
severe in Bayou Chico, an industrialized basin adjoining Pensacola Bay. Other developed bayous adjoining
Pensacola Bay and the other bays also showed relatively severe toxicity. The main basins of the bays generally
showed lower toxicity than the adjoining bayous. The different toxicity tests, however, indicated differences in
severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test, a bioassay of meta-
bolic activity of a bioluminescent bacteria, indicated toxicity was pervasive throughout the entire study area. The
least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a
very small portion of the area.

Causes of toxicity were not determined in the survey. However, mixtures of potentially toxic substances, includ-
ing pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the mea-
sures of toxicity. The concentrations of many substances were highest in Bayou Chico, where the most severe
toxicity was observed. At these toxic sites, some of the substances had considerably elevated concentrations,
often exceeding numerical guidelines or known toxicity thresholds. The relationships between toxicity and chemical
concentrations differed among the bays and toxicity tests.

EXECUTIVE SUMMARY

The National Status and Trends (NS&T) Program, administered by the National Oceanic and Atmospheric Ad-
ministration (NOAA), conducts a nationwide program of monitoring and bioeffects assessments. As a part of this
program, regional surveys are conducted to determine the toxicity of sediments in estuarine and marine environ-
ments.

Toxicity in this survey of four western Florida Bays was determined using a suite of four laboratory tests done on
all samples: (1) percent survival of marine amphipods (Ampelisca abdita) in 10-day tests of solid-phase (bulk)
sediments; (2) changes in bioluminescent activity of a marine bacterium, Photobacterium phosphoreum, in 5-
minute Microtox™ bioassays of organic extracts; (3) fertilization success of the sea urchin Arbacia punctulatain
one hour tests of the sediment porewater; and (4) normal embryological development of A. punctulatain 48-hour
tests of the porewater. In addition, the Mutatox™ variant of the microbial bioluminescence tests were performed
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on samples collected during the second year from Bayou Chico Bay, Choctawhatchee Bay and Apalachicola
Bay. The concentrations of trace metals, pesticides, other chlorinated compounds, polynuclear aromatic hydro-
carbons, and sedimentological features of the sediments were determined on 102 of the 123 total samples.

Based upon the chemistry data acquired as a part of this survey, concentrations of many trace metals, pesti-
cides, and polynuclear aromatic hydrocarbons (PAHs) were considerably higher in the urbanized bayous of
Pensacola, Choctawhatchee, and St. Andrew Bays than in the main basins of those systems or in Apalachicola
Bay. Trace metals concentrations exceeded background levels as predicted by geochemical normalization us-
ing metal-to-aluminum ratios, suggesting problematic metals loadings from upland sources. Concentrations of
zinc, numerous high and low molecular weight PAHSs, dieldrin, and DDT isomers were patrticularly high in Bayou
Chico. To a lesser degree, bulk chemistry results showed elevated values of several contaminants in Watsons
Bayou, Bayou Texar, Garnier Bayou, Boggy Bayou, and Massalino Bayou. Therefore, these data suggested that
toxicity would be most probable and most severe in Bayou Chico, somewhat less likely in the other urban
bayous, and least likely in the main basins of all four bays.

Some of the tests showed agreement and concordance among test results, while others failed to show signifi-
cant concordance. Therefore, different toxicity tests identified overlapping but generally different patterns in
toxicity. The amphipod test data showed a general lack of toxicity. Only three stations throughout all four bays
were significantly toxic in the amphipod test; one in Apalachicola Bay, one in Choctawhatchee Bay, and one in
Bayou Chico Bay in the Pensacola Bay estuary. Amphipod survival was less than 80% of controls in only one
sample, which was collected from Bayou Chico.

The data from the Microtox™ tests indicated that the majority of the samples from the four bays were toxic; 114
of 123 samples were significantly different from controls. Toxicity in this test was pervasive, extending through-
out most or all of each bay. Mean test results often were less than 10% of reference response levels. All of the
samples from Choctawhatchee Bay, St. Andrew Bay, and Bayou Chico were significantly different from controls.
All except one sample from Apalachicola Bay were toxic and all except eight samples from Pensacola Bay were
toxic. Nontoxic samples came from an upstream station in the Apalachicola River, several stations near the
mouth of and scattered throughout Pensacola Bay.

Results of the Mutatox™ tests conducted in Year 2 revealed that 22 of 52 samples produced a strong genotoxic
response (G category). An additional 11 stations produced suspect results. All stations tested in Bayou Chico
provided a genotoxic response. In contrast, only one of the nine samples from Apalachicola Bay showed a
genotoxic response and five of the samples showed no genotoxicity.

The sea urchin fertilization tests showed relatively high toxicity in several bayous of Choctawhatchee Bay, Watsons
Bayou in St. Andrew Bay, and Bayou Chico of Pensacola Bay, as compared to the remainder of the study area.
There was relatively low toxicity in most of the main basins of Pensacola and St. Andrew Bays. Most of the 1994
samples from Bayou Chico were highly toxic in all porewater concentrations, whereas none collected in 1993
was toxic in any porewater concentrations. Two samples each in the lower Apalachicola River and lower
Apalachicola Bay were toxic in 100% porewater. Among the 123 samples tested, 38 (31%) were significantly
toxic in tests of 100% porewater.

In the urchin embryo development tests, there was a relatively high incidence of toxicity in Choctawhatchee Bay,
Apalachicola Bay and Bayou Chico as compared to other areas in the study area, and a low incidence of toxicity
in St. Andrew Bay. Stations exhibiting toxicity in the embryo development tests were largely associated with
urbanized tributaries to the bays in all systems, except in Apalachicola Bay. Toxicity was especially apparent in
Bayou Chico, Watson Bayou, and Pensacola Harbor in Pensacola Bay, Destin Harbor, portions of Garnier Bayou,
and part of Choctawhatchee Bay. Among the 123 samples tested, a total of 46 (37%) were toxic in at least 100%
porewater, a slightly higher proportion than observed in the fertilization tests. Results of the embryo develop-
ment tests agreed relatively well with those from the urchin fertilization tests.

Overall, the highest incidence of toxicity occurred among the Bayou Chico samples, followed by Choctawhatchee
Bay, Apalachicola Bay, St. Andrew Bay, and Pensacola Bay. All of the Bayou Chico samples were toxic in the sea
urchin development, Microtox™, and Mutatox™ tests performed in 1994; all were highly toxic in the urchin
development and Mutatox™ tests; and all except one sample were highly toxic in the urchin fertilization tests. In
addition, the only sample that was highly toxic in the amphipod survival tests was collected in Bayou Chico. In
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Choctawhatchee Bay, all samples were toxic in Microtox™ tests, most were toxic in Mutatox™ tests, 57% were
toxic in urchin fertilization tests, 49% were toxic in urchin development tests, and one sample was toxic in the
amphipod tests. The incidence of toxicity in Pensacola Bay and St. Andrew Bay was relatively similar: zero and
one sample toxic in amphipod tests (respectively), 10% and 13% toxic in urchin fertilization tests, 27% and 23%
toxic in urchin development tests, and 80% and 100% toxic in Microtox™ tests.

These data suggest that amphipod survival was affected in a tiny portion (0.005%) of the entire study area and
microbial bioluminescence was affected in nearly all (98.9%) of the area. Both sea urchin fertilization and em-
bryo development were affected in nearly one-half of Choctawhatchee Bay, and small portions of St. Andrew
and Pensacola bays. In Apalachicola Bay, the majority of the area was affected in sea urchin development tests,
whereas about one-third was affected in the fertilization tests. Usually, small portions of each bay were affected
in both tests of 50% and 25% porewater. Throughout the entire study area, 23% of the area was toxic in urchin
fertilization tests and 34% was toxic in the urchin development tests. Usually, small portions of each bay were
affected in both tests of 50% and 25% porewater.

The relationships between toxicity measured in the four bioassays and solid-phase (bulk) sediment chemistry
were explored in a multistep approach. Microtox™ test results were highly correlated with the concentrations of
chlorinated compounds, including DDTs, PCBs, and total pesticides. To a lesser degree, Microtox™ test results
were significantly correlated with the concentrations of some trace metals and PAHs. Urchin fertilization was
highly correlated with the concentrations of PAHs, numerous trace metals, and DDT. Urchin embryo develop-
ment was primarily correlated with the concentrations of unionized ammonia, and to a lesser degree, PAHS,
three trace metals, and the pesticide dieldrin. The results of the Microtox™ and urchin fertilization tests were
significantly correlated with the sum of the 25 chemical concentrations normalized to (i.e., divided by) effects-
based numerical guidelines, since these quotients account for the contribution of 25 different substances to
toxicity. The correlations strongly suggest that mixtures of toxicants, co-varying with each other, contributed
significantly to the observed toxicity. This association, on the other hand, was not observed in the embryo
development tests, in which ammonia was a major contributor to toxicity. The relationships between measures
of toxicity and chemical concentrations differed considerably among the bioassays and among the four bays.

Based upon these analyses, it appeared that the concentrations of zinc, high molecular weight PAHs, two DDD/
DDT isomers, total DDT, and dieldrin were most closely associated with toxicity in Pensacola Bay. To a lesser
extent, cadmium, copper, lead, low molecular weight PAHs, and in the case of urchin embryo development,
unionized ammonia, were moderately associated with toxicity in Pensacola Bay. Spearman-rank correlations
failed to show significant correlations between toxicity and chemical concentrations in samples from Bayou
Chico and Apalachicola Bay. However, there were numerous obvious associations between elevated chemical
levels and toxicity. Of note, samples from Bayou Chico had considerably higher chemical concentrations than
those from Apalachicola Bay.

The associations between toxicity and concentrations of potentially toxic substances in Choctawhatchee Bay
were strongest for the urchin fertilization tests in which a large gradient in response was observed. Most notable
among these were the concentrations of DDT isomers, total DDT, silver, the sum of PAHs, and dieldrin.

The four toxicity endpoints measured in St. Andrew Bay appeared to co-vary with different substances in the
samples. Despite significant correlations between amphipod survival and the concentrations of copper and
DDT, none of the bioassay results were significantly different from controls. Sea urchin development was signifi-
cantly correlated only with unionized ammonia in the porewater tests, and zero percent normal development
occurred in some samples with relatively high ammonia concentrations. Urchin fertilization was correlated with
a number of trace metals, DDT, and ammonia. Concentrations of some metals and DDT exceeded effects-
based numerical guideline values. Microtox™ test results were highly correlated with complex mixtures of sub-
stances, including many trace metals and organic compounds. Additionally, Microtox™ test results showed a
strong association with the cumulative ERM quotients, again suggesting that microbial bioluminescence re-
sponded to complex mixtures of substances in the organic solvent extracts.

The data from this survey indicated that sediments in some regions of the area were contaminated relative to
background conditions and effects-based numerical guidelines, that toxicity occurred throughout the entire re-
gion as measured in the most sensitive tests, that the most severe toxic responses and the highest incidences



of toxicity occurred in Bayou Chico, that the toxicity test results generally paralleled the concentrations of poten-
tially toxic substances in the samples, and that different mixtures of toxicants were associated with toxicity.

INTRODUCTION

Toxic chemicals can enter the marine environment through numerous routes: stormwater runoff, industrial point
source discharges, municipal wastewater discharges, atmospheric deposition, accidental spills, illegal dumping,
pesticide applications and agricultural practices. Once they enter a receiving system, toxicants can become
bound to suspended particles and increase in density sufficiently to sink to the bottom. Sediments are one of the
major repositories of contaminants in aquatic environments. Furthermore, if they become sulfficiently contami-
nated, sediments can act as sources of toxicants to important biota. Sediment quality data are direct indicators
of the health of coastal aquatic habitats.

Sediment quality investigations conducted by the National Oceanic and Atmospheric Administration (NOAA)
and the Florida Department of Environmental Protection (FDEP) have indicated that toxic chemicals are found in
the sediments and biota of Florida estuaries, including those of the western Florida panhandle (NOAA, 1992;
Seal et al., 1994). This report documents the toxicity of sediments collected within four large bays of the western
Florida panhandle: Pensacola, St. Andrew, Choctawhatchee, and Apalachicola (Figure 1).

As a component of its National Status and Trends (NS&T) Program, NOAA monitors toxicant concentrations in
selected locations throughout the nation and surveys the biological significance of toxicant accumulations in
selected regions. In the monitoring component of the program, mollusks and demersal fishes are captured
annually for chemical analyses of their tissues. Sediments are collected and analyzed for a suite of metals and
organic parameters. Spatial patterns and temporal trends in chemical concentrations are determined from the
data (O’Connor and Ehler, 1991; O’'Connor, 1991). Chemical analyses of sediments collected at each sampling
site were performed at many of the sites the first year that each site was sampled. Nationwide, NS&T monitoring
activities were initiated in 1983 and have continued each year to the present.

Thus far, sediment toxicity surveys have been performed by NOAA in San Francisco Bay (Long and Markel,
1992), Tampa Bay (Long et al., 1994), Long Island Sound (Wolfe et al., 1994), Hudson-Raritan estuary (Long et
al., 1995), Boston Harbor (Long et al., 1996), Los Angeles/Long Beach Harbor (Sapudar et al., 1994), San Diego
Bay (Fairey et al., 1996), and in several other areas in which the surveys are still underway.

Each year, numerous sites (50-70) have been sampled along the Gulf of Mexico, including the bays of the
western Florida panhandle (Sericano et al., 1990). During the first years of the program, sediments and oysters
collected at sites in Choctawhatchee Bay and St. Andrew Bay contained extremely high concentrations of DDTSs,
PCBs, and non-DDT pesticides (Sericano et al., 1990), exceeding the concentrations of those substances in all
other Gulf coast sites.

NS&T Program data from estuaries nationwide for the period 1984 through 1989 were summarized by NOAA
(1991). These data revealed that the concentrations of a number of chemicals were significantly elevated in
sediments, warranting further in-depth investigation. In ranking estuaries nationwide with respect to sediment
contamination, the NS&T Program ranked Choctawhatchee Bay 1* (highest) in the nation for total chlorinated
pesticides, 3" highest for total DDT, 6™ highest in lead, 6" highest for total PAHs, and 4™ highest for arsenic. St.
Andrew Bay ranked 19" highest in the nation with respect to total chlorinated pesticides, 9" highest for total
DDTs, 2™ highest for total PCB’s, 3" highest for total PAHs, and 6" for TOC.

The concentrations of total polynuclear aromatic compounds (PAHSs), total DDTs, and lead in fine-grained sedi-
ments collected at each of the ten historic NS&T Program monitoring sites in western Florida are compared in
Figures 2-4. These samples accompanied collections of either fish or oysters and were intended to represent
“average” conditions within major basins of each bay. They were not selected to represent highly contaminated
areas within each bay. They may or may not represent conditions throughout each bay.

Stations PCMP and SAWB in St. Andrew Bay had the highest PAH concentrations. PAH concentrations were
relatively low at three stations sampled in Apalachicola Bay, two locations in Pensacola Bay, station CBSR in
Choctawhatchee Bay, and station PCLO in St. Andrew Bay. The concentrations of total DDTs showed a pattern
very different from that of total PAHs (Figure 3). Elevated concentrations were found only at one location; station
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CBPP in Choctawhatchee Bay. Another pattern in concentrations was evident with lead (Figure 4). Lead con-
centrations were elevated at station CBPP, intermediate at two locations in St. Andrew Bay (stations PCMP and
SAWB), and moderate to relatively low in several other locations. The concentrations of total PAHs, total DDTSs,
and lead were uniformly relatively low in the Apalachicola Bay stations.

Concentrations of major classes of organic compounds and each trace element are compared among the NS&T
Program stations collected during 1991 in Figures 5-8. In Pensacola Bay, concentrations of PAHs, chromium,
copper, lead, nickel, and zinc were relatively high at station PEN as compared to station PBIB (Figure 5). In
Choctawhatchee Bay, PAH, DDT, and lead (Pb) concentrations were higher at station CBPP than at station
CBSR (Figure 6). Among the three locations sampled in St. Andrew Bay, stations PCMP and SAWB had rela-
tively high concentrations of several classes of organic compounds, chromium, copper, lead, and zinc (Figure
7). In Apalachicola Bay, the concentrations of both high molecular weight PAHs and total PAHs were relatively
high at station APDB compared to the others (Figure 8). All other organic compounds occurred at relatively low
concentrations. Among the trace elements, chromium and zinc occurred in relatively high concentrations at all
three stations (Figure 8). The concentrations of each trace metal were similar among the three stations.

The Florida Department of Environmental Protection investigated coastal sediment quality from 1982 through
1991 throughout the state (Seal et al., 1994). The objectives of their investigations were several: to provide a
statewide (spatial) perspective on the presence of contaminants in coastal systems, to investigate areas of
special interest (ports projects) and to determine ways to interpret sediment quality data.

The FDEP produced an atlas that summarized sediment chemistry data from both the FDEP and NOAA NS&T
Program investigations in bay systems throughout the state (Seal et al., 1994). Elevated levels of both metals
and organic contaminants were detected in samples collected statewide, including those from the four estuaries
in northwest Florida. Metals contamination within the studied estuaries was usually within a factor of 5 times the
expected background level, based on normalization to aluminum (Seal et. al., 1994, Schropp and Windom,
1988). PAHs were the most frequently detected organic contaminant, which followed a statewide trend (Seal et
al, 1994). Other organic contaminants of concern included pesticides and PCBs. Brief synopses of conditions
within each of the four bays are provided in the following discussion.

Pensacola Bay . Four major water bodies make up the Pensacola Bay estuarine system: Escambia Bay, Pensacola
Bay, Blackwater Bay and East Bay (Figure 9). Together these waterbodies form one of the largest estuarine
systems of Florida, encompassing over 152 square miles of estuarine surface water area (Seal et al., 1994). The
estimated drainage basin covers 3,480 square miles of Florida and Alabama. Average water depth of the estu-
ary is 19 feet (NOAA, 1985). Principle tributaries of the estuary include the Escambia, Blackwater, Yellow and
East Bay Rivers.

The western portion of the Pensacola Bay estuary is predominantly urban, whereas the eastern portion is rela-
tively undeveloped. The urban center of the city of Pensacola contains extensive industrial, commercial and
residential development. Industrial facilities are located along Bayou Chico, the Escambia River, and near
Escambia Bay. Other land uses within the watershed include urban development, military holdings, silviculture,
agriculture, conservation and recreation (Seal et al., 1994, Paulic et al. 1994).

The Pensacola Bay estuary is included in the Surface Water Improvement and Management (SWIM) program of
the State of Florida, overseen by the Florida Department of Environmental Protection and administered by the
Northwest Florida Water Management. The SWIM plan prepared for the Pensacola Bay estuary reported that
there has been an extensive loss of aquatic grass beds and widespread fluctuations in fish and shellfish har-
vests in both Escambia Bay and East Bay (Northwest Florida WMD, 1990).

FDEP sediment studies detected PAHs and PCBs in most stations located throughout the bay, and in NOAA
NS&T Program stations in Pensacola Bay and Indian Bayou showed elevated PAH concentrations. Sediments
in the western portion of the estuary exceeded natural background levels of metals, especially in Bayou Chico
and Bayou Grande (Seal et. al., 1994).

Choctawhatchee Bay . The Choctawhatchee Bay estuary has a surface area of 123 sqg. miles with an estimated

drainage area of 2259 square miles of Florida and Alabama (Seal et al., 1994) (Figure 10). Average depth of the
estuary is about 22 feet (NOAA, 1985), however the bay is deepest to the west, and shallows to the east. The
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Choctawhatchee River entering the bay on the far eastern shore is the most significant freshwater tributary.
Several small tributary streams enter the Bay along the north shore (Seal et al., 1994).

Development in the basin along the north and west has been sparse. Eglin Air Force Base occupies most of the
immediate northern drainage basin. The city of Fort Walton Beach is on the eastern shore, and the town of
Destin is situated at East Pass, the mouth of the bay. Much of the peninsula that forms the southern boundary of
the bay has been developed for single-family dwellings, hotels, and condominiums (Paulic et al., 1994). This
coastal peninsula was severely impacted by Hurricane Opal in October of 1995.

Investigations of sediment quality throughout Choctawhatchee Bay have shown minimal enrichment by metals
bay wide (Seal et al, 1994), however concentrations of several metals were elevated in Destin Harbor, and
concentrations of lead were elevated near Boggy Point at the confluence of Boggy Bayou and the main basin of
the Bay. Organic contaminants were elevated at several locations, including: PAH’s in Destin Harbor (Seal et al,
1994); and PAH'’s, PCB's, and total DDT at the some of highest levels in the nation at both the Santa Rosa and
Boggy Point NS&T Program locations (NOAA, 1991).

St. Andrew Bay . The St. Andrew Bay estuarine system has a surface area of 98 square miles. The drainage
basin of 1130 square miles is entirely within Florida. The average depth of the bay is 27 feet. Several embayments
distinguish the St. Andrew Bay estuarine system (Figure 11 ): West Bay, North Bay, East Bay and the main basin
of St. Andrew Bay. The drainage area includes the urban centers of Panama City, Lynn Haven, and Panama City
Beach, however, the majority of the watershed is forested and in silviculture (Paulic et. al., 1994).

Elevated concentrations of metals and organic contaminants have been documented in the bay (FDEP, 1994;
U.S. FWS, 1995; NOAA, 1991). The main source of elevated trace metals appears to be stormwater runoff from
urbanized areas in and around Panama City (Seal, 1994). PAH's, PCB’s and pesticides were detected at all
NS&T Program sites (NOAA, 1994).

An evaluation of dredged material from five stations in St. Andrew Bay, prepared by Battelle Ocean Sciences
(1993) for the Army Corps of Engineers, showed that, in general, sediments from stations located in the bay had
higher concentrations of the majority of contaminants of concern relative to reference sediments. Metals data
were plotted using the FDEP metals normalization procedure, and were rarely found to be elevated above
natural background levels. Sediments from most sites were nontoxic in multiple biological assays; sediments
from only one station were toxic to the amphipod Rhepoxynius abronius. However, significant bioaccumulation
of PAHs, pesticides and PCBs was measured in clams (Macoma nasuta) relative to reference sediment concen-
trations (Mayhew et.al, 1993), indicating that toxicants were bioavailable.

Apalachicola Bay . The Apalachicola Basin encompasses nearly 200 square miles of estuary, including St.
Vincent Sound, East Bay, Apalachicola Bay and St. George Sound (Figure 12). The major freshwater inflow to
the bay is the Apalachicola River, which originates at Lake Seminole, the impounded confluence of the
Chattahoochee and Flint Rivers, formed by the Jim Woodruff dam at Chattahoochee, Florida. Headwaters for
this alluvial river system originate in the Blue Ridge physiographic province. Annual flow into the bay is 25,000
cfs, varying seasonally from less than 15,000 to greater than 100,00 cfs. The estuary is highly productive,
providing over 90% of the Florida oyster harvest, as well as supporting commercial fin fishing and other shellfish
industries (Seal et al, 1994).

The Apalachicola estuary is unusual in that this system is composed of a river delta developing behind a sequence
of barrier islands. This geomorphic situation will eventually eliminate the estuary by sediment infiling (Donoghue
1988). Finer grained materials are associated with higher burdens of contaminants; it follows that there exists good
potential for contaminants to become trapped in the system in the finer grained depositional areas.

No metals enrichment had been detected by the DEP in the estuary, and only one sample out of three from
NOAA's NS&T Program surveys indicated slight enrichment with mercury. PAH’s, PCB’s and pesticides were
detected in Apalachicola Bay, but they occurred in relatively low concentrations.

Current Survey Rationale. Several factors lead to the decision to conduct a survey of sediment bioeffects in
this area. First, very high concentrations of organic compounds (DDT, PCB) had been found by the NOAANS&T
Program in sediments and biota of Choctawhatchee and St. Andrew bays, bringing attention to the area from a
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nationwide perspective. Second, the state of Florida wanted to further explore the potential for biological effects
in the marine environment and field-validate recently drafted statewide sediment quality guidelines. Previously
collected data were compared to effects-based numerical guidelines (Long and Morgan,1990; MacDonald, 1993,
1994). Sufficient numbers of sediment samples equaled or exceeded these values to warrant concern that
sediments may pose a toxicological risk to resident biota. Third, the bays of the western Florida panhandle
support abundant populations of living marine resources that could be at risk from toxicant contamination. Col-
lectively, these factors lead to the decision to determine if contamination of the sediments in the western Florida
panhandle was sulfficiently high to warrant concern for resident biota.

This document reports the results of a survey of sediment toxicity in four selected bays of the western Florida
panhandle. Sediments were collected throughout each of the bays over a two-year period to determine if there
was an effect on biota based on the use of a battery of laboratory toxicity tests.

The objectives of the survey were to:

(1) determine the presence and severity of toxic responses,

(2) estimate the spatial extent of toxicity,

(3) identify spatial patterns of toxicity in each system, and

(4) characterize the relationships between toxicity and potential toxicants.

Sampling and testing methods used in previous surveys performed elsewhere in the USA were employed in this
survey. A wide variety of candidate measures of toxicant effects were evaluated and compared to determine
which would be most useful in NOAA's surveys (Wolfe, 1992; Long and Buchman, 1989). Batteries of assays
performed with sediments, bivalve mollusks, and demersal fishes in selected regions have been used to form a
weight of evidence with regard to the presence and incidence of toxicant-associated bioeffects. Analyses of
sediment toxicity have been included in these regional assessments to provide an estimate of potential effects of
sediment contaminants on resident benthic populations. Batteries of toxicity tests appropriate for analyzing
sediment toxicity were selected following evaluations of a number of candidates (Long and Buchman, 1989).

Based upon sediment chemistry data from previous studies, toxicity was most probable in portions of Pensacola
Bay (especially in the adjoining urban/industrial bayous), St. Andrew Bay, and Choctawhatchee Bay. Toxicity
was least probable in Apalachicola Bay.

METHODS

Sampling Design. The four estuaries were investigated during 1993 and 1994; Pensacola and St. Andrew bays
were sampled during 1993, and Choctawhatchee and Apalachicola bays were sampled in 1994. Samples were
collected in Bayou Chico, an embayment contiguous to Pensacola Bay, during both years.

The study area included saltwater portions of these four coastal bays. Stratified, random sampling designs
patterned after those of the EMAP-Estuaries surveys (Schimmel et al., 1994) were used in each bay during the
selection of sampling stations. Each bay was subdivided into irregular-shaped strata. Large strata were estab-
lished in the open waters of the bays where toxicant concentrations were expected to be uniformly low. This
approach provided the least intense sampling effort in areas known or suspected to be relatively homogenous in
sediment type and water depth, and relatively distant from contaminant sources. In contrast, relatively small
strata were established in urban harbors and bayous nearer suspected sources in which conditions were ex-
pected to be heterogeneous or transitional. Sampling effort was more intense in the small strata than in the large
strata. The large strata were roughly equivalent in size as were the small strata.

This approach combines the strengths of a stratified design with the random-probabilistic selection of sampling
locations. Data generated within each stratum can be attributed to the dimensions of the stratum. Therefore,
these data can be used to estimate the spatial extent of toxicity with a quantifiable degree of confidence (Heimbuch,
et al., 1995). Strata boundaries were established to coincide with the dimensions of major basins, bayous,
waterways, etc. in which hydrographic, bathymetric and sedimentological conditions were expected to be rela-
tively homogeneous.

The locations of individual sampling stations within each strata were chosen randomly using the EMAP com-
puter software and hardware (Dr. Kevin Summers, U.S. EPA, Environmental Research Laboratory, Gulf Breeze,
FL). One to three samples were collected within each stratum. Usually, four alternate locations were provided for
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each station in a numbered sequence. The coordinates for each alternate were provided in tables and were
plotted on the appropriate navigation chart. In a few cases the coordinates provided were inaccessible. They
were rejected and the vessel was moved to the next alternate.

Sample Collection. At each station the sampling vessel was piloted to the first alternate location for the sample
collection. If the station was inaccessible or if the material at the location was only coarse sand with no mud
component, that alternate location was abandoned and the second (third, or fourth, if needed) alternate was
sampled. In almost all cases the first or second alternates were acceptable and were sampled.

Vessel positioning and navigation were aided with a Trimble NavGraphic XL Global Positioning System (GPS)
unit and a compensated LORAN C unit. Both systems generally agreed very well with each other when both
were operational. Both were calibrated and their accuracy verified each morning at a known location within the
study area.

Samples were collected with a Kynar-lined 0.1m2 modified van Veen grab sampler (also known as a Young
grab) deployed with an electric windless aboard the state of Florida R/V Raja. The grab sampler and sampling
utensils were acid washed with 10% HCI at the beginning of each survey, and thoroughly cleaned with site water
and acetone before each sample collection. Usually 3 or 4 deployments of the sampler were required to provide
a sufficient volume of material for the toxicity tests and chemical analyses. The upper 2-3 cm. of the sediment
were sampled to ensure the collection of recently arrived materials. Sediments were removed with a plastic
scoop and accumulated in a stainless steel pot. The pot was covered with a Teflon plate between deployments
of the sampler to minimize sample oxidation and exposure to shipboard contamination. The material was care-
fully homogenized in the field with a stainless steel spoon before it was distributed to prepared containers for
each analysis.

Samples were shipped in ice chests packed with water ice or blue ice to the testing laboratories by overnight
courier. Samples were accompanied by chain of custody forms which included the date and time of the sample
collection, and station designation.

Locations of the individual sampling stations for each bay are illustrated in Figures 13-17, and coordinates for
each are listed in Table 1. Forty samples were collected in 1993 throughout all the major basins of Pensacola
Bay and in Bayou Grande, Bayou Texar, Bayou Chico and the mouth of the Escambia River (Figure 13). Twelve
samples were collected in 1993/94 in Bayou Chico where toxicity was most probable (Figure 14). Samples
(n=36) were collected throughout Choctawhatchee Bay, a very large system, and many adjoining bayous (Fig-
ure 15). Thirty-one samples were collected throughout St. Andrew Bay, near Panama City (Figure 16). In
Apalachicola Bay, nine samples were collected throughout the bay and up the Apalachicola River (Figure 17).
Field log notes containing information on depth and sediment characteristics at each station are listed in Appen-
dix A.

Multiple toxicity tests were performed on all sediment samples. Chemical analyses were performed on a subset
of samples from each bay system for trace metals, butyl tins, polynuclear aromatic hydrocarbons, chlorinated
pesticides and PCBs following a review and evaluation of the toxicity test results. Because the study encom-
passed two years, different contract laboratories performed chemistry analyses and amphipod toxicity tests.

Amphipod Survival T est. The amphipod tests are the most widely and frequently used assays in sediment
evaluations performed in North America. They are performed with adult crustaceans exposed to relatively unal-
tered, bulk sediments. Ampelisca abdita has shown relatively little sensitivity to nuisance factors such as grain
size, ammonia, and organic carbon in previous surveys. In previous surveys, the NS&T Program has observed
wide ranges in responses among samples, strong statistical associations with toxicants, and small within-sample
variability (Long et al., 1994; Wolfe et al., 1994; Long et al., 1995).

Ampelisca abdita is a euryhaline benthic amphipod that ranges from Newfoundland to south-central Florida, and
along the eastern Gulf of Mexico. The amphipod test with A. abdita has been routinely used for sediment toxicity
tests in support of numerous EPA programs, including EMAP in the Virginian, Louisianian, and Carolinian prov-
inces (Schimmel et al., 1994). Amphipod toxicity tests followed ASTM protocols (ASTM, 1990, 1992). In the first
year, amphipod tests of samples from Pensacola Bay and St. Andrew Bay were conducted by the National
Biological Service (NBS, now USGS) laboratory in Port Aransas, Texas. In the second year, amphipod assays
were conducted by Science Applications International Corporation, (SAIC) in Narragansett, R.I.



In Year 1, test animals were purchased from Brezina and Associates of Dillon Beach, California. Amphipods
were packed in native sediment with 8-10 liters of seawater in doubled plastic bags. Oxygen was injected into
the bags and shipped via overnight courier to the testing lab at Port Aransas. Upon arrival, amphipods were
acclimated and maintained at 20«C for one day prior to the initiation of the test.

Control sediments for Year 1 testing included sediment collected from the natural habitat of the amphipods in
California, and a reference sediment from Redfish Bay, Texas. The Redfish Bay sediments had been used in
previous sediment quality assessment studies by SAIC and by the U.S. Fish & Wildlife Service (NBS, then
USGS). Both reference sediments were handled in the same manner as the Pensacola Bay and St. Andrew Bay
sediments.

For Year 2 testing, amphipods were collected by SAIC from tidal flats in the Pettaquamscutt (Narrow) River, a
small estuary flowing into Narragansett Bay, Rhode Island. Animals were held in the laboratory in pre-sieved
uncontaminated (“home”) sediments under static conditions. Fifty percent of the water in the holding containers
was replaced every second day when the amphipods were fed. During holding, A. abdita were fed laboratory
cultured diatoms (Phaeodactylum tricornutum).

Control sediments were collected by SAIC from the Central Long Island Sound (CLIS) reference station of the
U.S Army Corps of Engineers, New England Division. These sediments have been tested repeatedly with the
amphipod survival test and other assays and found to be nontoxic (amphipod survival has exceeded 90% in
85% of the tests) and uncontaminated (Wolfe et al., 1994; Long et al., 1995). Sub-samples of the CLIS sedi-
ments were tested along with each series of samples from Pensacola, Choctawhatchee and Apalachicola bays.

Amphipod testing performed by both laboratories followed the procedures detailed in the Standard Guide for con-
ducting 10 day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods (ASTM, 1990, 1992). Briefly,
amphipods were exposed to test and negative control sediments for 10 days with 5 replicates of 20 animals each
under static conditions using filtered seawater. For the Year 1 (NBS) test, 250 milliliters (mls) of test or control
sediments were delivered into 1-liter glass jars, and 700 mls of seawater were added to each jar. The Year 2 SAIC
procedure differed somewhat: 200 mls of test or control sediments were placed in the bottom of the test chamber
and covered with approximately 600 mis. of filtered seawater (28-30 ppt). For both sets of tests, air was provided by
air pumps and delivered into the water column through a pipette to ensure acceptable oxygen concentrations, but
suspended in a manner to ensure that the sediments would not be disturbed. Temperature was maintained at
~2000C by either incubator (NBS) or water bath (SAIC). Lighting was continuous during the 10 day exposure period
to inhibit the swimming behavior of the amphipods. Constant light inhibits emergence of the organisms from the
sediment, thereby maximizing the amphipod’s exposure to the test sediments.

Twenty healthy, active animals were placed into each test chamber, and monitored to ensure they burrowed into
sediments. Non-burrowing animals were replaced, and the test initiated. The jars were checked daily, and records
kept for dead animals and animals on the water surface, emerged on the sediment surface, or in the water column.
Those on the water surface were gently freed from the surface film to enable them to burrow, and dead amphipods
were removed.

Tests were terminated after ten days. Contents of each of the test chambers were sieved through a 0.5 mm mesh
screen. The animals and any other material retained on the screen were examined under a stereomicroscope for
the presence of amphipods. Total amphipod mortality was recorded for each test replicate.

During Year 1 the NBS laboratory had to terminate the first test trial due to poor amphipod survival in the controls.
Major storm events in the San Francisco Bay area may have led to poor viability of test animals. The tests were
repeated within 20 days of collection of test sediments. Animal quality and survival improved for the repeated test,
although they were not optimal. The second test batch was initiated within 10 days of receipt of field collected
sediments.

A positive control, or reference toxicant test, was used to document the sensitivity of each batch of test organisms.
The positive control consisted of 96 hr. water-only exposures to sodium dodecyl sulfate (SDS). LC50 values were
calculated for each test run.



Sea Urchin Fertilization and Embryological Development T ests. Tests of sea urchin fertilization and embryo
development have been used in assessments of ambient water and effluents and in previous NS&T Program
surveys of sediment toxicity (Long et al., 1994). Test results have shown wide ranges in responses among test
samples, excellent within-sample homogeneity, and strong associations with the concentrations of toxicants in
the sediments. The tests, performed with the early life stages of sea urchins, have demonstrated high sensitivity.

In previous surveys, the tests of embryological development have shown higher sensitivity than tests of fertiliza-
tion success and the two endpoints have shown relatively poor correlations with each other (Long, et al., 1990;
Carr, 1993; NBS, 1994; Carr et al., in press). It appears that these two endpoints respond to different toxic
substances in complex mixtures (Long, et al., 1990; Carr, 1993; NBS, 1994; Carr et al., in press).

Toxicity of sediment pore waters were conducted with the sea urchin Arbacia punctulata. These tests were
performed during both years by the National Biological Service (NBS), National Fisheries Contaminant Re-
search Center in Corpus Christi, Texas at their laboratory located in Port Aransas. Sea urchins used in this study
were obtained either from jetties at Port Aransas, Texas, or from Gulf Specimen Company, Inc. (Panacea,
Florida), and were acclimated to Port Aransas seawater before gametes were collected for testing.

Pore water was extracted from sediments with a pressurized squeeze extraction device (Carr and Chapman,
1992). Sediment samples were held refrigerated at 4° C until pore water was extracted. Pore water was ex-
tracted as soon as possible after receipt of the samples, but in no event were sediments held longer than 7 days
from the time of collection before they were processed. After extraction, porewater samples were centrifuged in
polycarbonate bottles (at 4200 g for 15 minutes in Year 1, and in Year 2, using a new centrifuge where1200 g for
15 minutes was adequate) to remove any particulate matter, and then frozen. Two days before the start of a
toxicity test, samples were moved from a freezer to a refrigerator at 4° C, and one day prior to testing, thawed in
a tepid water bath. Experiments performed by NBS have demonstrated no effects upon toxicity attributable to
freezing of the pore water samples.

Sample temperatures were maintained at 20+1° C. Sample salinity was measured and adjusted to 301 ppt, if
necessary, using ultrapure sterile water or concentrated brine. Other water quality measurements were made for
dissolved oxygen, pH, sulfide and total ammonia. Temperature and dissolved oxygen were measured with YSI
meters; salinity was measured with Reichert or American Optical refractometers; and pH, sulfide and total am-
monia (expressed as total ammonia nitrogen, TAN) were measured with Orion meters and their respective
probes. The concentrations of unionized ammonia (UAN) were calculated using respective TAN, salinity, tem-
perature, and pH values.

Each of the porewater samples was tested in a dilution series of 100%, 50%, and 25% of the water quality
adjusted sample with 5 replicates per treatment. Dilutions were made with clean, filtered (0.45 um), Port Aransas
laboratory seawater.

Tests followed the methods of Carr and Chapman (1992). Pore water from a reference area in Redfish Bay,
Texas, an area located near the testing facility and in which sediment porewaters have been determined to be
nontoxic in this test (e. g., Long et al., 1994), was included with each toxicity test as a negative (nontoxic) control.
Adult male and female urchins were stimulated to spawn with a mild electric shock, and gametes collected
separately.

For the sea urchin fertilization test, 50 uL of appropriately diluted sperm were added to each vial, and incubated
at 20+2°C for 30 minutes. One ml of a well mixed dilute egg suspension was added to each vial, and incubated
an additional 30 minutes at 20+2°C. Two mls of a 10% solution of buffered formalin solution was added to stop
the test. Fertilization membranes were counted, and fertilization percentages calculated for each replicate test.

For the sea urchin embryological development test, a well mixed dilute egg solution was added to each vial.
Then, 50 uL of appropriately diluted sperm were added to each vial, and vials were incubated at 20+1°C for 48
hours. At the end of 48 hours, 2 mls of 10% buffered formalin were added to each vial to stop the test. One
hundred embryos were counted, and recorded as normal, or as unfertilized, embryological development ar-
rested or otherwise abnormal. The percent of the embryos that were normal was reported for each replicate test.
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Microbial Bioluminescence Microtox™ T est. This is a test of the relative toxicity of extracts of the sediments
prepared with an organic solvent, and, therefore, it is immune to the effects of nuisance environmental factors,
such as grain size, ammonia and organic carbon. Organic toxicants, and to a lesser degree trace metals, that
may or may not be readily bioavailable were extracted with the organic solvent. Therefore, this test can be
considered as a test of potential toxicity. In previous NS&T Program surveys, the results of Microtox™ tests have
shown extremely high correlations with the concentrations of mixtures of organic compounds (Long et al., 1994;
Long et al., 1995; Wolfe et al., 1994).

The Microtox™ assay was performed with dichloromethane (DCM) extracts of sediments following the basic
procedures used in testing Puget Sound sediments (U.S. EPA, 1986, 1990, 1994) and San Francisco Bay
sediments (Long and Markel, 1992). Organic extracts were prepared by ABC laboratories, Inc. of Columbia,
Missouri. The extractions and transfers were conducted under a laminar flow hood to limit exposure of the
sample to light. All sediment samples and extracts were stored in the dark at 40C. Prior to initial homogenization
of the sediment samples, any excess water was decanted and large debris (shells, pebbles, etc.) was discarded.
Each sediment sample was centrifuged for five minutes at 1000 x g. Water was removed by decanting with a
Pasteur pipette. Moisture content of each sample was determined and recorded. Five g. of sediment were
weighed, recorded, and placed into a DCM rinsed 50 mL centrifuge tube. Residue or spectral grade DCM (30 ml)
was added and mixed. The mixture was shaken for 10 seconds, vented and tumbled overnight.

Each sample was centrifuged for 5 minutes at 1000 x g, and the extract poured into a Kuderna-Danish (KD)
flask. Again, 30 ml DCM was added to each centrifuge tube. Each tube was shaken for 10 sec, vented, centri-
fuged for 5 min at 1000 x g, and the extract transferred to the K-D flask. This extraction procedure was repeated
once more, and the extract combined in the flask.

A Snyder column was attached to the flask, and the DCM was concentrated with steam to a final volume of less
than 2 mls. Acetone (approximately 5 mls) was added to the flask, and the volume concentrated to approxi-
mately 2 mls. This acetone procedure was repeated. The extract was quantitatively transferred to a 10 ml DCM
rinsed flask, using acetone to rinse the Kuderna-Danish flask. The extract was concentrated with a gentle stream
of nitrogen gas to a volume of approximately 1 ml. Dimethylsulfoxide (DMSO) was added to make a final volume
of 10 ml.

A suspension of luminescent bacteria, Photobacterium phosphoreum, (Microbics Corporation, Inc.) was thawed
and hydrated with toxicant-free distilled water, covered and stored in a 4°C well on the Microtox™ analyzer. To
determine toxicity, each sample was diluted into four test concentrations. Percent decrease in luminescence of
each cuvette relative to the reagent blank was calculated. Based upon these data, the sediment concentrations
that caused a 50% decrease in light production (EC50’s) were reported.

A negative control (extraction blank ) was prepared using DMSO, the test carrier solvent. A positive control was
prepared by adding phenol (50 mg/ml) to an extraction blank. In addition to test sediment extracts, a sediment
sample from Florissant, Missouri was used as a procedural control.

Microbial Bioluminescence Mutatox™ T est. Samples collected during Year 2 (1994) from Bayou Chico,
Pensacola Bay, Choctawhatchee Bay and Appalachicola Bay were additionally tested for toxicity with the Mutatox™
assay. The Mutatox™ assay used a dark mutant strain of the luminescent bacterium P. phosphoreum for detec-
tion of environmental genotoxins. DNA-damaging substances were detected by measuring the ability of a test
extract to restore the luminescent capability in the bacterial cells (Johnson, 1992, 1994). The degree of light
increase indicated the relative genotoxicity of the sample.

A 100 ml aliquot of Mutatox™ Assay Medium (MAM) was prepared in a 250 ml beaker using a magnetic stirrer
and adjusted to 25+1cC. Rat hepatic S9 was thawed at 250C. An ampoule of freeze-dried bacteria was hy-
drated with 1.0 ml of MAM at 250C. MAM was immediately inoculated with the hydrated bacteria at a ratio of
100:1, stirred, and pre-incubated for 15 minutes at 25«C. Rat hepatic S9 was introduced into the MAM mixture
at 1%, stirred for 5 seconds and dispensed into sample cuvettes. Sediment extracts were tested in a dilution
series. The treated cuvettes were covered with foil, preincubated in a water bath at 37«C for 15 minutes, trans-
ferred to a closed storage container, and placed in a dark incubator with a vented hood at 25+1C for 16 to 24
hours.
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Three controls were used in the Mutatox™ assay: positive, negative and procedural. The positive controls
consisted of four known progenotoxins. An environmental control from a previous study was used in some
batches to monitor the sensitivity of the assay. The negative control was the carrier solvent; this control identified
the spontaneous light emission of the dark mutant strain. The procedural control was an organic extract of a fine
silt and clay particle sediment from Florissant, MO.

The response of the luminescent bacteria was determined by measuring the light intensity of each cuvette with
a model 500 analyzer (Microbics Corp.). A light value of 100 or more and at least three times the intensity of the
negative control was defined as a “genotoxic response”; sensitivity limits were the maximum peak concentration
and the lowest detected concentration in each dilution series. The “dose response number” was defined as the
number of genotoxic responses recorded at different concentrations per dilution series. A dilution series with a
dose response number of 3 or more was considered genotoxic, with a dose response number less than 3, the
series was considered suspect, and without a genotoxic response, the series was designated negative. There-
fore, the sample was considered genotoxic when replicate series indicated an average dose response number
of three or more, suspect when at least three replicate series indicated an average dose response number less
than three, or negative when at least three replicate series contained no genotoxic response. Replicate dilution
series were conducted on different days before each test sample was finally evaluated.

Chemical Analyses . Not all samples collected were analyzed for bulk chemical content. Sediment samples
were chosen for chemical analyses based upon an examination of the toxicity test results. Samples were cho-
sen that represented gradients in the toxicity results and furthermore represented contiguous geographic strings
of stations. In Year 1, chemical analyses of Pensacola Bay sediments were performed by Skidaway Institute of
Oceanography, Savannah, Georgia. Battelle Ocean Sciences analyzed sediments collected from St. Andrew
Bay in Year 1, and Choctawhatchee and Apalachicola Bays in Year 2. Both laboratories conformed with perfor-
mance-based analytical protocols and employed quality-assurance steps of the NS&T Program (Lauenstein
and Cantillo, 1993).

During the 1993 studies of Pensacola Bay, Skidaway Institute of Oceanography received samples directly from
the field. Upon receipt of the samples at the laboratory, sediments were frozen until selection for analysis. Total
digestion was performed for the trace metal analyses with nitric, perchloric and hydrofluoric acids. Following
digestion, samples were analyzed for lithium, aluminum, iron, manganese, cadmium, copper, chromium, nickel,
lead, zinc, silver, arsenic, vanadium, barium, titanium, and total phosphorus by inductively coupled plasma mass
spectrometry (ICP-MS). Mercury was quantified by ICP-MS (isotope dilution) methods (Smith, 1993). Total or-
ganic carbon and nitrogen were analyzed on a carbonate free basis, using a Perkin EImer model 240C elemen-
tal analyzer. Total carbonate was determined from the loss in weight in acidified samples.

Procedures used in the analyses of organic compounds followed the basic methods of MacLeod et al (1985).
For the polynuclear aromatic hydrocarbon (PAH) analyses, 50 g. of wet sediment was sequentially extracted
with methanol, 1:1 methanol-CH2Clo and CH2Cl». The organic phase was concentrated to several ml. and
stored refrigerated until fractionation with column chromatography. The extracts were fractionated on columns of
silica gel over alumina packed over activated copper to remove elemental sulfur. Aliphatic hydrocarbons were
eluted with hexane (fraction SA1), while aromatic hydrocarbons/ PCBs/ pesticides were eluted with 1:1 pentane:
CH2Cl» (fraction SA2). Further separation of the SA2 fraction was accomplished by Sephadex LH-20 chroma-
tography. PAHs were quantified by capillary gas chromatography-mass spectrometry utilizing full scan and se-
lected ion monitoring modes. PCB congeners and chlorinated pesticides were separated using silica gel column
chromatography.

Pesticides and PCBs were quantified by high-resolution fused silica capillary gas chromatography (GC) with
electron capture detection on a Varian 3400cx and Varian 8200 Auto sampler instruments. DB-5 capillary col-
umn (60m length, 0-25mm i.d. and 0.25 micron film thickness) was used to resolve the PCB congeners and
pesticides. Pesticides were identified and quantified by comparison to authentic pesticide standards. PCBs
could not be quantified after a high level of cleanup, due to the presence of interfering compounds, identified
later as nitro aromatic compounds. Butlyltins were analyzed with a Hewett-Packard 5890 GC interfaced with a
Finnigan Incos mass spectrometer operated in the electron impact mode.
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Chemical analyses were performed according to the quality control/quality assurance procedures of the NS&T
Program, including instrument calibration, use of internal standards, replication of some analyses, percent re-
coveries of spiked blanks, and analyses of standard reference materials.

During the remaining portions of the study, samples stored either at Skidaway Institute of Oceanography or at
the NBS laboratory were shipped to Battelle Ocean Sciences for analyses. Sediments were extracted by Battelle
Ocean Sciences in two batches containing approximately 19 field samples each. One procedural blank, one
standard reference material, a matrix spike sample and a matrix spike duplicate sample were extracted with
each batch. Each field sample contained 30 g to 50 g of sediment. Sediment dry weight was determined using
approximately 5 g of sample material. Analyses were performed for total trace metals, simultaneously-extracted
metals (SEM), acid-volatile sulfides (AVS), PCB congeners, pesticides, and polynuclear aromatic hydrocarbons
(PAHSs). Analyses were performed for total organic carbon and sediment grain size.

Extraction and analytical methods followed those of Peven and Uhler (1993). Sediment was weighed into pre-
weighed Teflon jars; surrogate internal standards (to monitor extraction efficiency), sodium sulfate, and 1:1
methylene chloride (DCM):acetone were added to each jar. Samples were extracted with the solvent mixture
three times using shaker table techniques. After each extraction, the jar was centrifuged and the overlying
solvent decanted into a labeled Erlenmeyer flask. Solvent from each of the three extractions was combined in
the flask. The combined extract was chromatographed through a 5 g, 2% deactivated alumina column eluted
with dichloromethane (DCM). After column cleanup, the sample extract was concentrated to approximately 900
uL and further processed using a size-exclusion high performance liquid chromatography (HPLC) procedure.
Six-hundred microliters of the extract were fractionated in this procedure, and the remaining 300 uL archived.
After HPLC cleanup, the sample extract was concentrated to approximately 1000 uL and recovery internal
standards were added to quantify surrogate recovery. The final sample was split in half by volume; one half was
dedicated to GC/MS analysis of PAHs and the other half was solvent-exchanged with iso-octane and analyzed
by GC/ECD for PCBs and pesticides.

The analytical methods for the trace metals followed those of Crecelius et al. (1993). Samples were completely
digested with 4:1 HNO3/HCIO4 and heated. The digestates were analyzed either by graphite furnace atomic
absorption (Ag, Cd, Se) or cold vapor atomic absorption (Hg) or x-ray fluorescence (Al, As, Cr, Cu, Fe, Mn, Ni,
Zn) or inductively-coupled plasma mass spectrometry (Sb, Sn). Two reagent blanks and three standard refer-
ence materials were analyzed in each analytical string of 50 samples.

The concentrations of acid volatile sulfides (AVS) and simultaneously-extracted metals (SEM) were determined
in the samples. The analytical methods employed selective generation of hydrogen sulfide by acidifying the
sample with 1N HCI, cryogenic trapping of the evolved H2S, and gas chromatographic separation with photoion-
ization detection. This method gives high sensitivity, low detection limits and very limited chemical interference
with minimal sample handling. The AVS analytical system is made of glass and Teflon because of the reactivity
of sulfide with metals. The filtered acid solution resulting from the AVS analysis was subsequently analyzed for
SEM using graphite furnace atomic absorption, cold-vapor atomic absorption, and inductively-coupled/mass
spectrometry.

Sediment samples were analyzed for total organic carbon (TOC) and total carbonate (TIC) by Global Geochem-
istry Corporation, Canoga Park, California. Before the samples were analyzed, LECO filtration crucibles were
precombusted for at least 2 hours at 450°C and allowed to cool. Between approximately 175 mg and 250 mg of
dried, finely ground and homogenized sample was placed in a pretreated crucible and 6N HCI| added to remove
inorganic carbon. After approximately 1 hour deionized water was flushed through the crucible removing the
acid, and the sample was dried overnight. Immediately prior to sample analysis, iron and copper chips were
added to accelerate the combustion. A LECO model 761-100 carbon analyzer was used to determine both the
TOC and TIC content. The analyzer converts all carbon in the sample to CO2 at high temperature in the pres-
ence of oxygen. The CO2 was then quantified by thermal conductivity detection. Before sample analysis for TIC,
the filtration crucibles were precombusted for at least 2 hours at 450°C and allowed to cool. Between approxi-
mately 175 mg and 250 mg of dried, finely ground, homogenized sample was placed in a pretreated crucible,
and the sample was placed in a 450°C oven for 2 hours to remove organic carbon.

The methods used to determine sediment grain size are those according to Folk (1974). Briefly, coarse and fine
fractions were separated by wet-sieving. The fine fractions (silt and clay) were further separated by suspending
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the sediment in a deflocculant solution and taking aliquots of the settling sediment at timed intervals after the
solution was thoroughly mixed. The coarse fraction (sand and gravel) was dried and then separated by sieving
through a 2 mm screen.

Statistical Methods.

Amphipod test. Percent amphipod survival data from each station that had a mean survival less than that of the
control was compared to the control using a one-way, unpaired t-test (alpha = 0.05) assuming unequal variance.
Data were not transformed since examination of data from previous tests have shown that A. abdita percentage
survival data met the requirement for normality. A one-sample t-test was used to compare data from each
sampling block with the mean performance control (CLIS) for each stratum.

Significant toxicity for A. abdita is defined here as survival statistically less than that in the performance control
(alpha = 0.05). In addition, samples in which survival was significantly less than controls and less than 80% of
control values were regarded as “highly toxic” or “numerically significant”. The 80% criterion is used by EPA as
a critical statistical value for A. abdita test data in EMAP-Estuaries methods (Holland, 1990). Similarly, the EPA/
COE dredged material guidance manual (the “green book”) also consider sediments toxic if survival relative to a
reference sediment is less than 80% (U.S. EPA/U.S. ACOE, 1990). Furthermore, statistical power curves cre-
ated from SAIC’s extensive testing database with A. abdita show that the power to detect a 20% difference from
the control is 90%.

Microtox™. Microtox™ data were analyzed using the computer software package developed by Microbics Cor-
poration to determine concentrations of the extract that inhibit luminescence by 50% (EC50). This value was
then converted to mg dry wt. using the calculated dry weight of sediment present in the original extract. To
determine significant differences of samples from each station, pair-wise comparisons were made between
contaminated samples and results from control sediments using analysis of covariance (ANCOVA). Concentra-
tions tested were expressed as mg dry wt. based on the percentage extract in the 1 ml exposure volume and the
calculated dry wt. of the extracted sediment. Both the concentration and response data were log-transformed
before the analysis. ANCOVA was used first to determine if two lines had equal slopes (alpha = 0.05). If the
slopes were equal, ANCOVA then determined the quality of the Y-intercepts (alpha = 0.05). A one-sample t-test
was used to compare data from each sampling block within each of the bays with the mean of the duplicate
performance control data.

Significant toxicity for Microtox™ is defined here as an EC50 statistically less than that in the performance
control. Samples were considered highly toxic or numerically significant when the EC50s were significantly
different from controls and less than 80% of the controls. The statistical significance of the 80% criterion has not
been determined for this test, however, the 80% criterion was used to be consistent with the other toxicity tests.
Also, in surveys performed in the Hudson-Raritan estuary and Long Island Sound, 81.4% and 90.0%, respec-
tively, of samples were significantly different from controls (alpha <0.05) when EC50 values were less than 80%
of control responses (Long et al., 1995; Wolfe et al., 1994).

Sea urchin fertilization and morphological development. For both the sea urchin fertilization and morphological
development tests, statistical comparisons among treatments were made using ANOVA and Dunnett’'s one-
tailed t-test (which controls the experiment-wise error rate) on the arcsine square root transformed data with the
aid of SAS (SAS, 1989). The trimmed Spearman-Karber method (Hamilton et al., 1977) with Abbott’s correction
(Morgan, 1992) was used to calculate EC5( (50% effective concentration) values for dilution series tests. Prior
to statistical analyses, the transformed data sets were screened for outliers (SAS, 1992). Outliers were detected
by comparing the studentized residuals to a critical value from a t-distribution chosen using a Bonferroni-type
adjustment. The adjustment is based on the number of observations (n) so that the overall probability of a type
1 error is at most 5%. The critical value (CV) is given by the following equation: cv= t(dfError, .05/(2 x n)). After
omitting outliers but prior to further analyses, the transformed data sets were tested for normality and for homo-
geneity of variance using SAS/LAB Software (SAS, 1992).

Spatial patterns in toxicity Spatial patterns in toxicity were estimated by plotting data on base maps of each bay.
Estimates of the spatial extent of toxicity were determined with cumulative distribution functions in which the
toxicity results from each station were weighted to the dimensions (km2) of the sampling stratum in which the
samples were collected (Schimmel et al., 1994). The size of each stratum (km2) was determined by use of a
planimeter applied to navigation charts, upon which the boundaries of each stratum were outlined. A critical
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value of less than 80% of control response was used in the calculations of the spatial extent of toxicity for all
tests.

Chemistry data. Similarly, chemical data from the sample analyses were plotted on base maps to identify spatial
patterns, if any, in concentrations. Trace metal concentrations were plotted against aluminum concentrations
and compared to expected ratios for uncontaminated sediments developed by Schropp et al., 1988.

Chemistry/toxicity relationships. Chemistry/toxicity relationships were determined in a five-step sequence (Long
et al., 1995). First, simple Spearman-rank correlations were determined for each toxicity test and each physical/
chemical variable. The correlation coefficients and their statistical significance were recorded and compared
among chemicals. Second, for those chemicals in which a significant correlation was observed, the data were
examined in scatterplots to determine if there was a reasonable pattern of increasing toxicity with increasing
chemical concentration and if any chemical in the toxic samples equaled or exceeded published numerical
guidelines.

Chemical concentrations expressed in dry wt. were compared with the ERM values of Long et al. (1995) devel-
oped for NOAA and the PEL values of MacDonald (1994) developed for the state of Florida. Also, the concentra-
tions of three PAHs (acenaphthene, fluoranthene, and phenanthrene) and two pesticides (dieldrin and endrin)
expressed in units of organic carbon were compared to proposed National sediment quality criteria (SQCs)
developed by U.S. EPA (1994). Finally, the concentrations of unionized ammonia were compared to LOEC
concentrations determined for the sea urchin tests by the U.S. National Biological Service (Long et al., in press
- Boston Harbor) and NOEC concentrations determined for amphipod survival tests published by Kohn et al.
(1994).

Third, the numbers of samples out of those that were analyzed that exceeded the respective guidelines were
determined. Fourth, the average concentrations of chemicals in nontoxic samples were compared with the
average concentrations in significantly toxic samples, and ratios between the two averages were calculated and
compared. In this step, the ratios of chemical concentrations in toxic samples to respective ERL/ERM values
from Long et al. (1995) and TEL/PEL values from MacDonald (1994) were also determined. Finally, the average
concentrations of chemicals in the toxic samples were compared with the respective numerical guidelines. The
combined results of these steps were examined to determine which chemical(s), if any, may have contributed to
the observed toxicity and which probably had a minor or no role in toxicity.

The data were treated separately for each bay. However, in the case of Bayou Chico, the 1994 data were
merged with those from Apalachicola Bay since the data sets for both bays were too small to analyze alone and
these two areas showed relatively high and relatively low toxicity, respectively. In addition, the toxicity/chemistry
correlations were determined for the entire combined data set formed by merging the data from all the bays.

Correlations were determined for all the substances that were quantified in each bay, usually including total
(bulk) trace metals, metalloids, trace metals simultaneously extracted (SEM) with acid volatile sulfides (AVS),
unionized ammonia (UAN), percent fines, total organic carbon (TOC), chlorinated organic hydrocarbons (COHS),
and polynuclear aromatic hydrocarbons (PAHS). In addition, a chemical index calculated as the sums of quo-
tients formed by dividing the chemical concentrations in the samples by their respective ERM values (from Long
et al., 1995) are shown. Those substances that showed significant correlations were indicated with asterisks. In
correlation analyses involving a large number of variables, some correlations could appear to be significant by
random chance alone. Adjustments are often needed to account for this possibility. Note that in the results tables
only those correlations shown with two or three asterisks would remain significant if the number of variables
were taken into account in these analyses.

RESULTS

Information recorded in field sample logs for station coordinates, sampling dates, water depths, and water col-
umn salinity, temperature, and dissolved oxygen concentrations are listed in Appendix A for each bay.

Physical Parameters.
Pensacola Bay. In Pensacola Bay, water depths at the sampling stations ranged from 1.2 through 10.0 meters,
and the temperature, salinity, and dissolved oxygen concentrations indicated the water column at most stations
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were relatively well mixed (Appendix Al). However, dissolved oxygen concentrations in some Blackwater Bay
stations were very low and surface salinities were zero. Bottom water dissolved oxygen concentrations were low
near the head of Bayou Chico in 1994, but not in 1993. Most sediments in Pensacola Bay were fine silts and
clays, often sulfurous and odiforous, occasionally with petroleum sheens.

Choctawhatchee Bay. In Choctawhatchee Bay most sampling stations were 2 to 6 meters deep (Appendix A2).
Bottom and surface temperatures were similar at most stations, however, in the Boggy Bayou/Rocky Bayou/
Tom'’s Bayou area surficial salinities were very low, indicative of freshwater inputs. Except for a few stations in
small bayous, bottom water dissolved oxygen concentrations were relatively high at most stations. Sediments
typically were olivine-colored silty clays, often accompanied with nhumerous benthic organisms, occasionally
with sulfurous odors. Sediments in Tom’s Bayou were noticeably enriched with organic matter.

St. Andrews Bay. Most stations in St. Andrews Bay were 2 - 6 meters deep, except for a few stations that were
up to 12 meters deep (Appendix A3). All but station 55 at the head of Watsons Bayous showed good water
column mixing. Bottom water dissolved oxygen at station 55 was noticeably depressed. Sediments usually were
silty clays, often either grey or olivine in color, and usually with numerous benthic organisms. Sediments at some
stations in Watsons Bayou were anoxic and had a sulfurous odor.

Apalachicola Bay. Apalachicola Bay stations ranged in depth from 1.6 to 5.4 meters (Appendix A4). Salinities
were relatively low, especially in the stations located in Apalachicola River; however, dissolved oxygen concen-
trations were high at all stations. Most stations in the bay had brown to olivine sandy mud whereas several
stations in the river had silty sand or silty clay with some sand.

Distribution and Concentrations of Chemical Contaminants. Most of the samples collected and testing for toxic-
ity were also analyzed for chemical concentrations. During both years of the study, 123 samples were tested for
toxicity; 101 of which were tested for chemistry. This division of analytical tests for each bay is summarized in
Table 2.

All of the 40 samples from Pensacola Bay were analyzed for metals, and one-half (20) were analyzed for
organics. All six of the 1994 Bayou Chico samples were analyzed for all substances. In 1994, 21 of the 37
samples from Choctawhatchee Bay were analyzed for chemistry. In St. Andrew Bay, organics were analyzed for
all samples, and trace metals were analyzed on 22 samples. Three of the nine samples from Apalachicola Bay
were analyzed for both organic and metals parameters. When sufficient funding was not available to perform
analyses on all samples, a subset was chosen following a review of the data from all toxicity tests. These
samples were not chosen randomly; rather, they were selected to represent toxicity gradients within selected
regions of each bay or among contiguous stations. Raw chemical data from all bays and both years are listed in
Appendix B. Distributions of representative substances among and within the four bays are illustrated in Figures
18-42. Note that the concentration scales differ among these figures.

Inter-bay comparisons. The maximum concentrations of total PAHs, total PCBs, total pesticides, and total DDTs
are compared among the four bays in Figure 18. The concentrations of the PAHs were considerably higher than
those of the other substances, obscuring between-bay patterns in concentrations. The maximum concentration
of total PAHs was highest at a station in Pensacola Bay, intermediate in St. Andrew and Choctawhatchee bays,
and lowest in Apalachicola Bay. To further define the distributions of PAHs, the maximum, mean, and minimum
concentrations were compared (Figure 19). These summarized data indicated the same pattern: relatively high
concentrations in Pensacola Bay, intermediate and nearly equivalent to each other in St. Andrew and
Choctawhatchee bays, and lowest in Apalachicola Bay. The maximum and minimum concentrations of total
PAHs among all samples differed by over four orders of magnitude.

Shown separately from the PAH data, between-bay distribution patterns are evident in the concentrations of
total PCBs, total pesticides, and total DDTs (Figure 20). Samples from Pensacola, St. Andrew, and Choctawhatchee
bays had considerably higher concentrations of these compounds than the samples from Apalachicola Bay. The
maximum concentration of PCBs occurred in a St. Andrew Bay sample, but the mean concentrations were
highest in Pensacola Bay samples. Total pesticide concentrations were highest in St. Andrew and Choctawhatchee
bays and lowest in Pensacola and Apalachicola bays. Mean concentrations of total DDTs were roughly equiva-
lent among Pensacola, St. Andrew, and Choctawhatchee bays.
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Lead and total mercury were selected to illustrate patterns found with metals in the different bay systems. The
maximum, mean, and minimum concentrations of lead were approximately equivalent among Pensacola, St.
Andrew, and Choctawhatchee bays, and relatively low in Apalachicola Bay (Figure 21). In contrast, total mercury
concentrations were relatively high in Pensacola and St. Andrew bays, intermediate in Choctawhatchee Bay,
and lowest in Apalachicola Bay (Figure 22).

Overall, these data suggest that the chemical concentrations and mixtures differed among the four bays. All data
suggest that, on average, the Apalachicola Bay samples were the least contaminated of the four bays. The
following data summarize chemical gradients within each of the four bays and Bayou Chico, an industrialized
tributary to Pensacola Bay.

Pensacola Bay. Chemical analyses were performed for metals on samples from all basins of Pensacola Bay and
the three adjoining, urbanized and industrialized bayous (Texar, Chico, and Grande). Organic compounds were
analyzed for samples from the three bayous and adjacent portions of Pensacola Bay. Among the Pensacola Bay
samples analyzed for organics, the concentrations of total PAHs were considerably higher in Bayou Chico
(stations 4-9) than in all other stations (Figure 23). PAH concentrations were intermediate in three samples from
Bayou Texar, and lowest in the main basin of the system. PAH concentrations diminished rapidly outside the
mouths of both bayous. Two samples from inner Bayou Chico had high PCB concentrations relative to all other
samples from Pensacola Bay (Figure 24). Total mercury concentrations were elevated in Bayou Texar and near
the Pensacola harbor (Figure 25). Lead concentrations were relatively high in all three urban bayous and near
the Pensacola harbor (Figure 26). Overall, these data suggest that most chemical substances were elevated in
concentration in the three urban bayous, especially Bayou Chico, but each substance had a unique distribu-
tional pattern within the bay.

Bayou Chico. Within Bayou Chico, total PAH concentrations were highest in samples collected in the middle and
lower reaches of the system (Figure 27). In contrast the concentrations of total PCBs were highest in stations
from the upper and middle reaches of the bayou (Figure 28). There was no clear pattern in the concentrations of
mercury and lead; samples with relatively high concentrations were scattered along the length of the bayou
(Figures 29, 30). Overall, these data suggest highly variable distributional patterns of chemical substances
within the bayou.

Choctawhatchee Bay. Bulk chemical analyses were done on 21 samples from Choctawhatchee Bay, including
many from adjoining bayous. PAH concentrations were highest at station A1-1 from Garnier Bayou and relatively
low in samples from the other stations (Figure 31). Concentrations of total PCBs were high in station A1-1 as well
as in stations F1-1 and F2-1 in Boggy Bayou (Figure 32). Relatively high concentrations of total mercury oc-
curred in samples from Garnier Bayou (Al-1, C2-1, C1-2), Boggy Bayou (F1-1, F2-1, E3-1), and Rocky Bayou
(G2-1) and low concentrations were found elsewhere in the bay (Figure 33). The concentrations of lead showed
a distributional pattern similar to that of mercury in this bay system (Figure 34).

St. Andrew Bay. Among the 31 samples from St. Andrew Bay analyzed for organics, samples from Watsons
Bayou (stations 55-63) and Massalino Bayou (stations 53-54) had the highest PAH concentrations (Figure 35).
PAH concentrations decreased relatively quickly beyond the mouths of these two urban bayous. The concentra-
tions of total PCBs showed a similar pattern (Figure 36). The sample from station 53 had the highest PCB
concentration. Among the 22 samples analyzed for metals, those collected in Watsons Bayou and Massalino
Bay had the highest concentrations of both mercury and lead (Figures 37, 38).

Apalachicola Bay. Chemical concentrations in samples from Apalachicola Bay were considerably lower than
those in the other three bays; note the differences in concentration scales between Figures 39-42 and the
previous figures. Among the four samples analyzed for chemistry, station A2-1 had the highest PAH concentra-
tions (Figure 39), but had the lowest concentrations of mercury and lead (Figures 41-42). PCB concentrations
were relatively uniform among the four stations (Figure 40).

Comparisons of T race Metals Concentrations to Background. The Florida Department of Environmental
Regulation (Schropp et al., 1990, Schropp and Windom, 1988) determined that in Florida, and generally throughout
the S.E. Coastal Plain, trace metal concentrations can be expressed as a function of the amount of aluminum
and metals in sediments, based on naturally occurring geochemical relationships. The relationship between
metals concentrations and aluminum content were determined in a series of field surveys involving collection of

17



sediments from sites throughout the state far removed from any known or suspect sources of contamination.
The correlation of natural metals relationships with aluminum were determined and bracketed by the 95% con-
fidence interval. Stations with corresponding values above the upper 95% confidence limit were considered to
be “enriched”. The level of enrichment was expressed as a unitless ratio. Enrichment in most cases can be
considered contributable to anthropogenic sources, whether introduced by point or nonpoint sources or by
atmospheric deposition. The probability that the metal was contributed by anthropogenic sources increases with
increasing enrichment ratios.

Concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc in the western Florida sediments
were compared to expected, background concentrations based upon normalization to aluminum. These rela-
tionships are summarized in Figures 43-47 for each bay and each trace metal, with the exception of nickel,
which was enriched in only a few samples throughout the entire four bay study area. Mercury was considered,
however, because of the lack of correlation of mercury with aluminum in the background dataset (Schropp et al.,
1990, Schropp and Windom, 1988), the highest value found in reference stations was set as a background value
(0.21 mg/kg dry wt.).

In the first year samples from Pensacola Bay, arsenic was not elevated above expected background (Figure
43a); however, cadmium, chromium, copper, lead, and zinc were elevated considerably in many samples (Fig-
ures 43b-43f). Pensacola Bay samples collected during the first year included six samples from Bayou Chico. In
the second year, concentrations of copper, lead, and zinc were elevated above expected background in all six
samples from Bayou Chico (Figures 44 d, and g) and cadmium and chromium were elevated in three or four
samples (Figures 44b, c).

Lead and zinc were enriched in most of the Choctawhatchee Bay sediments (Figures 45 e,f); correspondingly,
cadmium, chromium and copper were elevated in many samples (Figures 45 b, c, d). In St. Andrew Bay a slightly
different mixture; copper, lead, and zinc, were enriched (Figures 46d, e, f) in many samples along with cadmium
in some samples (Figure 46b). None of the three samples from Apalachicola Bay that were analyzed had en-
riched metals concentrations (Figures 47a, b, c).

In Pensacola Bay, the enriched samples were collected mainly from sites in Bayou Chico, Bayou Grande, and
Bayou Texar. In Choctawhatchee Bay, enriched samples were collected mainly from Garnier Bayou, Boggy
Bayou, and Destin Harbor. In St. Andrew Bay, enriched samples came from Massamino Bayou and Watsons
Bayou.

Stations that showed metals enrichment within the different bays usually were enriched with several of the
metals analyzed. Lead, mercury, copper and zinc were most frequently enriched, with no stations showing
enrichment with respect to arsenic and nickel.

Based upon the chemistry data acquired as a part of this survey, toxicant concentrations were considerably
higher in the urbanized bayous of Pensacola, Choctawhatchee, and St. Andrew bays than in the main basins of
those systems or in Apalachicola Bay. Chemical concentrations were particularly high in Bayou Chico, and to a
lesser degree, Watsons Bayou, Bayou Texar, Garnier Bayou, Boggy Bayou, and Massamino Bayou. Therefore,
the hypothesis is that higher levels of chemical contaminants will predict probable toxic effects, and that toxicity
would be most probable in Bayou Chico, somewhat less likely in the other urban bayous, and least likely in the
main basins of all four bays.

Toxicity T ests. Results of all toxicity tests are listed in Tables 3-7. Sample means and statistical significance
relative to controls are listed for each sampling station. Each station is listed as either: not significantly different
from controls (ns), or statistically significantly different from the controls (@p <0.05 x), or both significantly differ-
ent from controls (p<0.05) and less than 80% of the control value (xx).

Solid phase amphipod tests. Results of the amphipod tests performed with Ampelisca abdita are summarized for
both years in Table 3. In the first year (1993) samples from Pensacola Bay and St. Andrew Bay were tested by
the NBS (now, USGS) laboratory. Mean 96-h LC50 concentrations for the two test series were >20 mg SDS/I
and 7.27 mg SDS/I. Mean survival in home (San Francisco Bay) sediments was 68+10.4% and 93+8.4%, re-
spectively, in the two test series. Mean survival in the Redfish Bay reference sediments was 55+3.5% and
97+2.7%, respectively. The results of the two test series were considerably different, suggesting differences in
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the health of the animals used in the two test series. The results of the tests of the positive controls (SDS)
suggest that the animals used in the first tests were unusually insensitive, however, their low survival in the
reference and control sediments suggests they were very sensitive. Collectively, the data from the first test
series did not meet required quality assurance standards and, therefore, are of marginal value. The data from
the second test series met quality assurance standards and were of higher quality.

In the second year (1994) tests were performed by the SAIC laboratory. Mean 96-h LC50 concentrations for the
4 test series ranged from 7.41 to 7.47 mg SDS/I, indicating a very small range in variability and animal sensitivity.
Mean survival in Central Long Island Sound (CLIS) controls ranged from 85% to 98% and were acceptable.

In the first series of tests performed in 1993, mean percent survival for all samples from Pensacola Bay was 88%
or more of controls (Table 3). In the second test series (St. Andrew Bay), amphipod survival ranged from 89% to
106% of controls. No statistically significant differences in survival between treatments and controls were de-
tected with ANOVA in either test series 1 (p=0.9705) or test series 2 (p=0.1144).

In Year 2, four test series were run with samples from the western Florida estuaries. Mean amphipod survival
ranged from 74% to 105% of controls in the six samples from Bayou Chico (Table 3). One sample from station 5-
3 was significantly different from controls and mean survival was less than 80% of the control response. Mean
amphipod survival ranged from 87% to 113% of controls in the Choctawhatchee Bay samples and one sample
from station K2-1 was significantly different from controls (Table 3). In the nine samples from Apalachicola Bay,
mean survival ranged from 90% to 99% of controls and one sample from station A3-1 was different from con-
trols.

Spatial patterns in toxicity determined in the amphipod survival tests are illustrated in Figures 48-52. As de-
scribed above, none of the Pensacola Bay samples collected in 1993 were toxic, i.e. significantly different from
controls in this test (Figure 48). However, one sample collected in 1994 near the mouth of Bayou Chico was
highly toxic, i.e., different from controls and <80% of controls (Figure 49). The one sample from Choctawhatchee
Bay that was toxic in the amphipod tests was collected in the relatively undeveloped LaGrange Bayou adjoining
the far eastern reaches of the estuary (Figure 50). None of the samples collected in St. Andrew Bay were toxic
in the amphipod survival tests (Figure 51). One sample collected at the mouth of the Apalachicola River across
the river from the town of Apalachicola was toxic in the amphipod tests (Figure 52).

Overall, the amphipod test data showed a general lack of toxicity. No spatial patterns in toxic effects could be
measured from the results of this test. Only three stations throughout all four bays were significantly toxic in the
amphipod test; one in Apalachicola Bay, one in Choctawhatchee Bay, and one in Bayou Chico Bay in the Pensacola
Bay estuary. Amphipod survival was less than 80% of controls in only one sample, collected from Bayou Chico.

Microtox™ and Mutatox™ microbial bioluminescence tests of organic extracts. Microtox™ tests were conducted
on all samples collected in both years. Mutatox™ tests were performed only on the 1994 samples. In contrast to
results from the amphipod toxicity test, there was a broad- scale toxic response in the Microtox™ and Mutatox™
bioluminescence tests. Mean ECgq concentrations, standard deviations and results of one-tailed Dunnetts com-
parisons with reference materials in the Microtox™ tests are summarized by bay and by station in Table 4.
Additionally, results of the Mutatox™ tests are reported in Table 5.

In Year 1, ECg( values for organic extracts of samples from Pensacola and St. Andrew Bays ranged from 0.07
to 12.34 mg equivalent sediment wet weight. Expressed as percent of controls, the Microtox™ test results
ranged from 0.6% to 119%. Mean ECgq values were statistically compared to the NFCRC standard reference
sediment. In this initial analysis, all test samples had significantly reduced ECgsqs (alpha < 0.01). Subsequently,
test results for the station with the highest ECg( (station 22 in Pensacola Bay with an ECgq of 12.34 mg equiva-
lent sediment wet weight) was used as the least toxic reference treatment. The majority of the stations in Year 1
sampling had significantly reduced ECgq values (alpha < 0.05) as compared to the ‘reference’ station 22 (Table
4). In Year 1 results, only 7 stations of 71 from both Pensacola and St. Andrew bays were not significantly
different from the ‘reference’ ECg(q values.

Fifty-two samples from the remainder of the study area were tested during Year 2, including those from all

stations in Bayou Chico, Choctawhatchee and Apalachicola bays. Mean ECgq values were statistically com-
pared to the reference sediments collected from Redfish Bay, Texas (ECgq value = 48.9+2.8). With the excep-
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tion of one sample in Apalachicola Bay, all stations were significantly different from the reference material (alpha
= 0.01). In addition, most EC5q concentrations were less than 80% of control means and many were less than
10% of controls. Expressed as percent of the control response, the range in response varied from 1.21 to 175%
of the reference value.

Spatial patterns in Microtox™ test results are illustrated in Figures 53-57. In Pensacola Bay all samples tested
from Bayou Grande, Bayou Chico and inner Pensacola Harbor were highly toxic (different from controls and
<80% of controls) in this test (Figure 53). Many of bioluminescence responses were less than 10% of controls,
especially in samples from Bayou Grande, Bayou Chico, and the Pensacola inner harbor. Samples from the
outer Pensacola Harbor were not toxic and one sample each in Escambia Bay, East Bay, and Bayou Texar were
not toxic. Samples from three stations (16, 24, and 25) collected nearest the mouth of the estuary were not toxic
and the sample from station 14 was toxic but did not show results less than 80% of controls. The combined
1993/1994 data (Figure 54) showed widespread toxicity in the Microtox™ tests throughout Bayou Chico. All of
the samples that showed the highest toxicity were collected near the mouth of Bayou Chico (Figure 54).

Spatial patterns in toxicity were difficult to discern in Choctawhatchee and St. Andrew bays, since all samples
were highly toxic (Figures 55, 56). Most of the samples in which responses were less than 10% of controls were
collected in the peripheral bayous adjoining Choctawhatchee and St. Andrew bays. All of the samples from
Watson's Bayou and Massamino Bayou, for example, were very highly toxic. In Apalachicola Bay, the upstream
station in the Apalachicola River, which had a considerable amount of coarse sand, was not toxic in Microtox™
tests; the other eight samples were highly toxic (Figure 57). Samples in which responses were less than 10% of
controls were collected from stations scattered throughout the bay.

Collectively, the data from the Microtox™ tests indicated that the majority of the samples from the four bays were
toxic; 114 of 123 samples were significantly different from controls. Toxicity in this test was pervasive, extending
throughout most or all of each bay. Mean test results often were less than 10% of reference response levels. All
of the samples from Choctawhatchee Bay, St. Andrew Bay, and Bayou Chico were significantly different from
controls. All except one sample from Apalachicola Bay were toxic and all except eight samples from Pensacola
Bay were toxic. Non-toxic samples came from an up-stream station in the Apalachicola River, several stations
near the mouth of Pensacola Bay, and several stations scattered throughout Pensacola Bay.

An analysis of Mutatox™ results from the Year 2 stations revealed that 22 of 52 samples produced a strong
genotoxic response (G category, Table 5). An additional 11 stations produced suspect (S) results. All stations
tested in Bayou Chico Bay provided a genotoxic response. In contrast only one of the nine samples from
Apalachicola Bay showed a genotoxic response and five of the samples showed no genotoxicity.

No spatial patterns in Mutatox™ test results were evident in Bayou Chico, since all samples collected in 1994
were genotoxic (therefore, no map was prepared). In Choctawhatchee Bay genotoxic samples were most evi-
dent in the adjoining bayous, including Destin Harbor (D stations), Joes Bayou (H stations), the two arms of
Garnier Bayou, Boggy Bayou, Rocky Bayou, and LaGrange Bayou (Figure 58). Most of the M and N stations in
the main basin of the bay were not genotoxic and the three stations sampled near the north shore were sus-
pected as genotoxic. One sample from Apalachicola Bay determined to be genotoxic was collected near the
mouth of the Apalachicola River (Figure 59). Three samples, one from each sampling stratum in Apalachicola
Bay, were suspected as genotoxic, whereas, two samples collected near the mouth of the bay were not toxic.

Sea urchin fertilization and embryological development. Sea urchin fertilization and embryological development
tests were performed in two test series in 1993, and in one test series in 1994. Sulfide concentrations in all but
two samples (BC1-2 and BC2-2, in Bayou Chico, Pensacola Bay 1994) were below the detection limit of 0.01
mg/l. Test porewater dissolved oxygen concentrations ranged from 86 to 128%. Values for pH ranged from 6.97
to 8.67. Total ammonia nitrogen (TAN) concentrations ranged from 0.04 - 18.2 mg/| for both years, and unionized
ammonia (UAN) ranged from 2.4 - 208.1 mg/l (test series one) and 1.2 - 239.4 mg/I (test series two) during 1993,
and from 4.1 - 299.5 mg/l in the 1994 tests. The lowest observable effect concentrations (LOEC- the concentra-
tion above which toxicity begins) determined in the NBS laboratory for sea urchin development and fertilization
tests are 90 mg UAN/L and 800 mg UAN/L, respectively (Carr et al., 1996). There were 11 samples in which the
90 mg/I LOEC for urchin development tests was exceeded in 1993, and 5 samples in 1994. No samples in either
year exceeded the 800 mg/l LOEC for urchin fertilization.
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Results of the urchin fertilization tests of 100%, 50%, and 25% porewater are listed for each station in Table 6. In
Pensacola Bay four samples were significantly different from controls in tests of 100% porewater. In tests of
100% and 50% porewater only one sample from Pensacola Bay was toxic. In contrast five of the six samples
from Bayou Chico collected in 1994 were toxic in tests of 100% porewater and all remained toxic in tests of both
50% and 25% porewater. The 1994 test results for Bayou Chico contrast with those from 1993, in which none of
the samples was toxic in this test. Of all the bays, percent fertilization was most significantly reduced in
Choctawhatchee Bay at the 100% porewater concentration. The mean values were lower overall than other
bays, and toxicity was apparent in a higher proportion of stations (21 of 37 stations). However, toxicity was
reduced considerably in subsequent dilutions; only 7 of 37 stations showed a significant level of toxic response
at the 25% porewater concentration. In Apalachicola Bay four of the nine samples showed a highly significant
reduction in fertilization success in 100% porewater; but only one of these samples remained toxic in 50%
porewater and none was toxic in 25% porewater.

A number of different spatial patterns in the urchin fertilization tests were evident. One sample from upper Bayou
Grande, one from upper East Bay, and two from the lower main basin of Pensacola Bay were toxic in 100%
porewater (Figure 60). Only the sample from Bayou Grande was toxic in both 100% and 50% porewater. All
stations sampled in Bayou Chico in 1993 were non-toxic and all sampled in 1994 were highly toxic (Figure 61),
thus obscuring any possible spatial patterns in toxicity. In Choctawhatchee Bay the urchin fertilization tests
showed spatial patterns in toxicity similar to those suggested with the Mutatox™ tests. That is, most of the highly
toxic samples were collected within the adjoining bayous and many samples from the main basin were either
non-toxic or toxic only in 100% porewater (Figure 62). Samples toxic to urchin fertilization at all porewater
concentrations were collected in Garnier Bayou, Toms Bayou (stratum F, an arm of Boggy Bayou), and one
sample each from strata L and M along the north shore of the main basin (Figure 62).

Three stations (stations 56, 58, 59) sampled in the Watsons Bayou tributary to St. Andrew Bay had significant
responses in the fertilization tests at 100% porewater, but only one (station 56 at the upper end of the bayou)
was toxic at 50% porewater, and none were toxic at 25% porewater (Figure 63). In addition, one sample col-
lected off the mouth of Watsons Bayou was toxic in tests of 100% porewater. In Apalachicola Bay, four samples
were toxic, two each in the lower Apalachicola River and the lower bay (Figure 64). The sample from station C3-
1 was toxic in both 100% and 50% porewater.

Overall, the results of the sea urchin fertilization tests showed relatively high toxicity in several bayous of
Choctawhatchee Bay, Watsons Bayou in St. Andrew Bay, and Bayou Chico of Pensacola Bay compared to the
other areas and relatively low toxicity in most of main basins of Pensacola and St. Andrew bays. Most of the
1994 samples from Bayou Chico were highly toxic in all porewater concentrations, whereas none collected in
1993 was toxic in any porewater concentrations. Two samples each in the lower Apalachicola River and lower
Apalachicola Bay were toxic in 100% porewater. Among the 123 samples tested, 38 (31%) were significantly
toxic in tests of 100% porewater.

Results of the sea urchin embryological development tests are summarized in Table 7. Normal development
was reduced to some degree in samples from all of the bays. Test results ranged from 0.0% to 99.6% normal
development among all 123 samples. Eleven of 40 samples from Pensacola Bay collected in 1993 were signifi-
cantly toxic in this test. All except one of the samples collected in 1993 and 1994 in Bayou Chico were highly
toxic in both 100% and 50% porewater. Ten of the 12 Bayou Chico samples showed 0.0% normal development
in 100% porewater.

In Choctawhatchee Bay, 18 of 37 samples were significantly toxic in the embryological development test with
100% porewater (Table 7). Five of these samples showed 0.0% normal development. However, only four samples
were significantly toxic in tests of 50% porewater and none was toxic in 25% porewater. In St. Andrew Bay 7 of
31 stations were significantly toxic in tests of 100% porewater. Watsons Bayou stations 55-59 in St. Andrew Bay
had a highly significant response in tests of 100% porewater. Two of these five were toxic at the 50% porewater
concentration, but none were toxic at the 25% concentration.

Urchin development was significantly reduced (both significantly different from control and less that 80% of
control) in tests of 100% porewater at four of the nine stations in Apalachicola Bay (Table 7). Two of these
samples showed 0.0% normal development. However, none of the samples was toxic at either the 50% or 25%
concentrations.
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As in the urchin fertilization tests, a number of different spatial patterns in toxicity were apparent with the embryo
development tests. In Pensacola Bay, toxicity was restricted mainly to Pensacola Harbor and Bayou Chico
(Figure 65, Figure 66). Several samples from Bayou Chico were toxic in all porewater concentrations (Figure 66)
and several from the Pensacola Harbor area were toxic in either 100% or 50% porewater. Toxicity diminished
rapidly toward the lower bay and the mouth of the estuary. One sample each from Bayou Grande, the mouth of
the Escambia River and Bayou Texar were toxic in 100% porewater. Only the upper-most station (number 4) in
Bayou Chico was non-toxic (Figure 66).

In Choctawhatchee Bay, samples most toxic to embryo development were those from Destin Harbor (D stra-
tum), Joes Bayou (H stratum) and Toms Bayou (F stratum) in which results were significant in both 100% and
50% porewater (Figure 67). In addition, samples from several other bayous, especially both arms of Garnier
Bayou, were toxic only in the 100% porewater test. Only two samples from the main basin (strata L, M, N) were
toxic. Toxicity in the embryo development test was restricted to five stations sampled in Watsons Bayou and two
stations in the main basin of St. Andrew Bay (Figure 68). In Apalachicola Bay three samples from the main basin
of the bay and one from the lower Apalachicola River were toxic, but only in tests of 100% porewater (Figure 69).

Overall, stations exhibiting toxicity in the embryo development tests largely were associated with urbanized
tributaries to the bays in all cases except Apalachicola Bay. Toxicity was especially apparent in Bayou Chico,
Watson Bayou, the Pensacola Harbor, Destin Harbor, and portions of Garnier Bayou. Among the 123 samples
tested, a total of 46 (37%) was toxic in at least 100% porewater, a slightly higher proportion than observed in the
fertilization tests. There was a relatively high incidence of toxicity in Choctawhatchee Bay, Apalachicola Bay and
Bayou Chico as compared to other areas and a very low incidence of toxicity in St. Andrew Bay. Results agreed
relatively well with those from the urchin fertilization tests.

Concordance among toxicity tests. In the preceding section it was apparent that there were different levels of
agreement or concordance among the different toxicity tests. Spearman-rank correlations were determined for
pairs of tests to quantify these relationships. In Pensacola Bay the only statistically significant (p<0.05) correla-
tion was between sea urchin fertilization and microbial bioluminescence (Table 8). Although test results for the
sea urchin development and fertilization bioassays showed a positive correlation coefficient, the relationship
was not significant. There were no significant correlations among tests for the 1994 combined Bayou Chico/
Apalachicola samples (Table 9). There were no significant correlations among tests in Choctawhatchee Bay
(Table 10). In St. Andrew Bay, sea urchin fertilization was significantly correlated with both microbial biolumines-
cence and sea urchin development (Table 11).

The Mutatox™ test results could not be correlated with other bioassay results because they were categorical
scores, not numerical values. Nevertheless, all of the 21 samples that were scored as genotoxic in the Mutatox™
tests were highly toxic in the Microtox™ tests, resulting in 100% agreement. There were 39 samples that were
scored as either non-toxic or genotoxic in the Mutatox™ tests: 22 (56%) of these samples agreed as to toxicity
or non-toxicity in the sea urchin fertilization tests and 23 (59%) agreed in the urchin development

tests.

Overall, these data suggest that the toxicity tests identified overlapping, but, generally different patterns in toxic-
ity. The most consistent correlations were those between sea urchin fertilization and microbial bioluminescence
and between the Mutatox™ test results and Microtox™ test results and both of the sea urchin tests. In the
combined data set, urchin fertilization and development were significantly correlated (Rho = +0.682, p<0.0001)
and Microtox™ EC50 values and amphipod survival were significantly correlated (Rho = +0.363, p=0.005).
Microtox™ EC50 values were negatively correlated with both urchin fertilization and urchin development (Rho =
-0.305 and -0.299, respectively, p<0.05). None of the other combinations of toxicity tests were significantly
correlated

Incidence of toxicity. Table 12 summarizes the incidence of samples tested from each bay in which bioassay
results were either significantly different from controls or both significantly different from controls and less than
80% of the control response. For the Mutatox™ test, the toxic samples included those determined to be either
Genotoxic or Suspect (highly toxic samples were those determined to be Genotoxic).

In the amphipod survival tests, only three of the 123 samples were toxic; one each from Bayou Chico,
Choctawhatchee Bay, and Apalachicola Bay. One sample from Bayou Chico was highly toxic (Table 12). In the

22



urchin fertilization tests the incidence of toxicity was highest in Bayou Chico, followed by Choctawhatchee Bay,
and Apalachicola Bay. However, the incidence of toxicity in this test decreased rapidly with porewater dilutions in
all areas except Bayou Chico, where 5 of 6 samples were highly toxic in all porewater concentrations. Through-
out the entire study area, approximately one-third (30.9%) of the samples were toxic in tests of 100% porewater.

In the urchin development tests, the incidence of toxicity was, again, highest in Bayou Chico, followed by Choctawhatchee
and Apalachicola bays (Table 12). As in the fertilization tests, toxicity also dropped rapidly with porewater dilutions, exceptin
Bayou Chico. In Apalachicola Bay none of the samples was toxic in tests of 50% or 25% porewater. In Pensacola,
Choctawhatchee, and St. Andrew bays none of the samples was toxic in tests of 25% porewater.

Of the 123 samples tested in Microtox™ tests, 114 were toxic and of those, 113 were highly toxic, equivalent to
92.7% and 91.9% incidences of toxicity (Table 12). In the Mutatox™ tests all 6 Bayou Chico samples, 24 of 37
Choctawhatchee Bay samples, and 4 of 9 Apalachicola Bay samples were either genotoxic or suspected as
genotoxic.

Overall, the highest incidence of toxicity occurred among the Bayou Chico samples, followed by Choctawhatchee
Bay, and the other areas. All of the Bayou Chico samples were toxic in the sea urchin development, Microtox™,
and Mutatox™ tests; all were highly toxic in the urchin development and Mutatox™ tests; and all except one
sample was highly toxic in the urchin fertilization tests. In addition, the only sample that was highly toxic in the
amphipod survival tests was collected in Bayou Chico. In Choctawhatchee Bay all samples were toxic in Microtox™
tests, most were toxic in Mutatox™ tests, 57% were toxic in urchin fertilization tests, 49% were toxic in urchin
development tests, and one sample was toxic in the amphipod tests. The incidence of toxicity in Pensacola Bay
and St. Andrew Bay was relatively similar: zero and one sample toxic in amphipod tests (respectively); 10% and
13% toxic in urchin fertilization tests; 27% and 23% toxic in urchin development tests; and 80% and 100% toxic
in Microtox™ tests. Among all areas Apalachicola Bay had the lowest incidence of toxicity in all tests.

Spatial extent of toxicity. Toxicity data were weighted to the sizes of each sampling stratum and the total area in
each bay that was “highly” toxic (i.e., results were less than 80% of controls) was determined as the sum of the
weighted areas. Data from both 1993 and 1994 sampling episodes in Bayou Chico were combined for these
calculations. Calculations were not prepared for the Mutatox™ bioassay, since the results were categorical, not
numerical.

In Apalachicola Bay, estimates of the spatial extent of toxicity were: 0.0 12<m2 for amphipod survival; 157.5 km2
(84% of total) for sea urchin de¥elopment in 100% porewater; 63.6 km™ (33.9%) for sea urchin fertilization in
10%% porewater; and 186.8 km™ (99.6%) for Microtox™ (Table 13). In St. Andrew Bay the estimates were: 0.0
km™ for amphipod survival; 5.6% for sea urchin development; 1.8% for sea urchin fertilization; and 100% for
Microtox™. The estimates for Pensacola Bay were very similar to those for St. Andrew Bay: 0.015% for amphi-
pod survival; 2% for sea urchin development; 5.3% for sea urchin fertilization; and 96.4% for Microtox™. In
Choctawhatchee Bay, estimates were: 0.0% for amphipod survival; 45.4% for sea urchin development; 44.5%
for sea urchin fertilization; and 100% for Microtox™.

These data suggest that amphipod survival was affected in a tiny portion of the entire study area and microbial
bioluminescence was affected in nearly all of the area. Both sea urchin fertilization and embryo development
were affected in nearly one-half of Choctawhatchee Bay, and small portions of St. Andrew and Pensacola bays.
In Apalachicola Bay the majority of the area was affected in sea urchin development tests, whereas about one-
third was affected in the fertilization tests. Usually, small portions of each bay were affected in both tests of 50%
and 25% porewater.

Relationships between T oxicity and Chemical Concentrations. The relationships between toxicity mea-
sured in the different toxicity tests and the concentrations of numerous chemical substances in the samples
were examined for each bay and for the entire combined study area. The cause(s) of toxicity cannot be deter-
mined in field surveys such as those performed in these studies and determinations of causality were not among
the objectives of the surveys. However, several statistical analyses were performed to identify those substances
most clearly associated with measures of toxicity in the samples.

Pensacola Bay. In the 1993 Pensacola Bay samples, none of the substances were correlated with amphipod
survival, not surprising because amphipod test results were similar among all samples (Table 14). Results of the
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Microtox™ tests were highly correlated with the concentrations of numerous chemicals, notably, cadmium, cop-
per, lead, zinc, and the sum of the eight metals/ERM ratios. Microtox™ results also were correlated with many
individual PAHs, the sum of low molecular weight PAHSs, total PAHs, the sum of the eight PAH/ERM quotients,
several chlorinated organic hydrocarbons, several PCB congeners, and the sum of all 18 chemical/ERM quo-
tients. The results of the urchin fertilization tests were significantly correlated with a few trace metals, many
PAHSs, a few chlorinated hydrocarbons, and the sum of all 18 chemical/ERM quotients. Urchin development was
most correlated with the concentrations of un-ionized ammonia, followed by barium and the sum of the eight
PAH/ERM quotients. In addition, urchin development was significantly correlated with the concentrations of a
number of trace metals, PAHSs, pesticides, and the sum of all 18 chemical/ERM quotients.

Collectively, these data suggest that toxicity in Pensacola Bay was associated with mixtures of many sub-
stances acting together, notably including cadmium, copper, lead, zinc, PAHs, several pesticides, and in the
case of urchin development, ammonia. The significant relationship between the sum of the 18 chemical/ERM
guotients and the results of both urchin tests and Microtox™ tests is noteworthy because it further suggests that
mixtures of substances co-varying with each other contributed to toxicity.

Concentrations of several trace metals, PAHs, and chlorinated organic hydrocarbons equaled or exceeded
respective guideline values in Pensacola Bay (Table 15). Notably, concentrations of zinc, dibenzo(a,h)anthracene,
dieldrin, and isomers of DDT were elevated relative to guideline concentrations. These substances were corre-
lated with toxicity, and they exceeded either the respective PEL or ERM concentration or both in some samples.
None of the concentrations of un-ionized ammonia equalled or exceeded toxicity thresholds for amphipod sur-
vival (236 ug/l, Kohn et al., 1994) or urchin fertilization (800 ug/l, Long et al., 1996). However, seven un-ionized
ammonia concentrations exceeded the low observable effects concentration (90 ug/l, Long et al., 1996) for
urchin development and all seven samples were toxic.

Selected toxicity/chemistry relationships are illustrated in Figures 70-74 in which data are shown as bivariate
scatterplots. These scatterplots include the Spearman-rank correlation coefficients, and either sediment quality
guidelines or toxicity thresholds as reference points. Percent normal development of urchins dropped to zero in
many samples with relatively high zinc concentrations, i.e., above the PEL concentration of 271 ppm (Figure 70).
Conversely, percent normal development was relatively high in most samples with zinc concentrations below the
TEL concentration of 124 ppm. Also, zero percent normal development occurred in some (but, not all) samples
with total high molecular weight PAH concentrations above the PEL value of 6676 ppb (Figure 71). A sample
from Bayou Chico was unusual in having over 25000 ppb total HPAH and over 90% normal urchin development.
This sample also had an unusually high TOC concentration (6 %) which may have inhibited the bioavailability of
hydrocarbons.

In the Microtox™ tests, there was very strong association with concentrations of DDT, including the sum of the
DDT isomers (Figure 72). Microtox™ EC50 concentrations decreased rapidly with increasing concentrations of
total DDT and all samples that exceeded the PEL concentration were highly toxic. To determine if mixtures of
substances acting together may have contributed to toxicity, chemical concentrations were normalized to (i. e.,
divided by) their respective ERM values and these quotients were added to form cumulative ERM quotients.
Microtox™ test results were correlated with the cumulative ERM quotients; there was a strong pattern of de-
creasing EC50 concentrations with increasing ERM quotient values (Figure 73).

Ammonia is known to be a highly toxic substance in marine sediments (Kohn et al., 1994) and can be a major
contributor to toxicity, especially in the un-ionized form. Results of the urchin embryo development tests were
highly correlated with the concentrations of un-ionized ammonia. The scattergram of the data confirmed this
strong association (Figure 74). All except one sample with a concentration of ammonia above the LOEC of 90
ug/l were highly toxic in tests of embryo development. The majority of the samples with low ammonia concentra-
tions were not toxic.

In the Microtox™ tests, the average concentrations of six trace metals and many organic compounds or classes
of compounds in toxic samples exceeded the average concentrations in non-toxic samples by factors of up to
5.8 (Table 16). As expected in these analyses, there was considerable variability in these concentrations as
indicated with the relatively high standard deviations relative to the means. Nevertheless, there was a pattern of
higher concentrations, on average, of many substances in the 32 toxic samples than in the 8 non-toxic samples.

24



The average concentrations of all other substances that were measured, but not listed in Table 16, were lower in
the toxic samples than in the non-toxic samples.

The average concentrations of many substances in the samples that were toxic in Microtox™ tests exceeded
either the ERL or TEL concentrations of Long et al. (1995) or MacDonald (1994), respectively. Only 4,4’-DDT,
however, equaled or exceeded the ERM or PEL concentrations (Table 16). Furthermore, the average concentra-
tions of total DDTs in the toxic samples exceeded the ERL value by a factor of 17.1 and the TEL value by a factor
of 6.9. The concentrations of total DDTs and two isomers were correlated with toxicity (Table 14). Concentrations
of high molecular weight PAHSs, total PAHs, and total PCBs in toxic samples were high relative to the non-toxic
samples and guideline values (Table 16).

In contrast, although cadmium was highly correlated with Microtox™ test results (Table 14), the concentrations
of this metal were not remarkably elevated compared to guideline values. Silver was neither correlated with
toxicity test results nor particularly elevated in the toxic samples relative to either non-toxic samples or numerical
guidelines. Both lead and zinc were correlated with Microtox™ results but only slightly elevated in toxic samples
relative to both non-toxic samples and guideline concentrations.

These data suggest that the high molecular weight PAHs and DDTs, and to a lesser extent, total PCBs, total
PAHSs, and several trace metals (e.g., copper, lead, and zinc) may have contributed to toxicity in the Microtox™
tests. Most other trace metals and organic compounds probably had either a minor role or no role in contributing
to toxicity.

In the urchin fertilization tests, only three trace metals and two pesticides were elevated in concentrations in the
three toxic samples relative to the 36 non-toxic samples (Table 17). The ratios between the toxic and non-toxic
averages, however, were very small (<2.0) and the average concentrations in toxic samples exceeded respec-
tive guideline values by very small amounts (ratios of 1.1 to 3.6). None of these five substances showed signifi-
cant correlations with fertilization success (Table 14).

Numerous substances were correlated with urchin embryological development (Table 14). The concentrations
of many of these chemicals also were elevated in the toxic samples relative to non-toxic samples and numerical
guidelines (Table 18). Notable among these chemicals were zinc, the sum of low molecular weight PAHs, 4,4'-
DDD, 4,4’-DDT, and dieldrin, all of which had average concentrations in toxic samples 3.5 to 6.8 times higher
than in the non-toxic samples and 3.3 to 26.4 times higher than respective numerical guidelines. The average
concentrations of these five substances exceeded PEL values as well as the lower TEL concentrations. All of
these substances were significantly correlated with urchin development. They may have contributed to toxicity in
this test. The other substances listed in Table 18 may have made minor contributions to toxicity.

Table 19 provides a summary of the analyses of the relationships between toxicity and chemistry for Pensacola
Bay. Table 19 includes the number of toxicity tests in which each substance was significantly correlated; the
number of samples in which each substance exceeded either the ERL or TEL value; the ratio between the
average chemical concentrations in toxic and non-toxic samples for each test; and the ratios between the aver-
age concentrations in toxic samples versus the respective TEL value. Based upon these summarized data, it
appears that the concentrations of zinc, high molecular weight PAHs, two DDD/DDT isomers, total DDT, and
dieldrin were most closely associated with toxicity. To a lesser extent, cadmium, copper, lead, low molecular
weight PAHSs, and in the case of urchin embryo development, un-ionized ammonia, were associated with toxicity
in Pensacola Bay. The significant correlations between three measures of toxicity (Microtox™, urchin fertiliza-
tion, urchin development) and the sums of the chemical concentrations normalized to (i.e., divided by) the ERM
values suggests that these substances acted together in complex mixtures to contribute to toxicity. Substances
not included in Table 19 probably had no role or a minor role in contributing to toxicity. Other major contributors
to toxicity may have included substances not measured in the chemical analyses, such as the extensive findings
of nitro aromatic compounds later identified in cleanup of the PAH analyses.

Bayou Chico/Apalachicola Bay. Because the Bayou Chico and Apalachicola Bay datasets were relatively small,
they were combined to examine chemistry/toxicity relationships. In the combined Bayou Chico/Apalachicola
Bay data set from 1994, very few substances were correlated with toxicity (Table 20). Only six substances (five
PAHs and one PCB congener) were correlated with toxicity and they were correlated only with urchin fertiliza-
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tion. Many correlation coefficients were numerically relatively high (i.e., > 0.5), but, because of considerable
variability and the relatively small sample size (n=10), they were not significant.

Scatterplots of the data showed that, despite the non-significant correlations, toxicity increased with increasing
concentrations of many substances (Figures 75-79). Except for one sample, urchin fertilization dropped to zero
as zinc concentrations increased to approximately 100 ppm and four samples exceeded both the PEL and ERM
values for zinc (Figure 75). Similarly, Microtox™ EC50 concentrations decreased rapidly with increasing con-
centrations of fluoranthene (Figure 76) and one sample exceeded the proposed national sediment quality crite-
rion (300 ug/goc, U. S. EPA, 1994). Except for one sample with high urchin fertilization, test results dropped
rapidly as total PAHs increased; two samples exceeded the PEL value of 16770 (Figure 77). Reflecting the
association between the complex mixtures of substances in the samples and toxicity, urchin normal develop-
ment decreased markedly with increasing cumulative ERM quotients (Figure 78).

Urchin development showed a strong association with un-ionized ammonia concentrations in the porewater and
several samples exceeded the LOEC concentration of 90 ug/l (Figure 79). Dissolved oxygen concentrations
were relatively high in the 1993 samples and very low in most 1994 samples; however, there was no apparent
relationship between in situ bottom water dissolved oxygen concentrations and toxicity in either the fertilization
or embryo development tests.

One sample from Bayou Chico (station 3-2) stood out as unusual in some scatterplots (i.e., Figures 75, 77) since
the concentrations of many substances were relatively high, but the sample was not toxic in either of the amphi-
pod or urchin fertilization tests. This sample had an unusually high concentration of total organic carbon (7.1%),
thereby possibly reducing the bioavailability of the toxicants. The Microtox™ test indicated toxicity in this sample
which is not unusual since this test was performed with an extract of the sediments prepared with an organic
solvent. The solvent would be expected to elute mixtures of organics and, to a lesser extent, trace metals thus
increasing their bioavailability in the extract.

As noted earlier, the concentrations of several trace metals (especially, copper, lead, and zinc) were
anthropogenically-elevated relative to background concentrations in the Bayou Chico samples and not in the
Apalachicola Bay samples. In addition, the concentrations of many substances in the Bayou Chico samples
equalled or exceeded applicable, effects-based, sediment quality guidelines.

A summary of the exceedances of numerical guidelines is listed in Table 21. Numerous aromatic hydrocarbons
were particularly elevated in concentration, including the sums of both low and high molecular weight com-
pounds. One sample from Bayou Chico exceeded the national criterion for fluoranthene. The concentrations of
zinc were particularly high in several samples relative to the guideline values. Two isomers of DDT and total
PCBs were found in relatively high concentrations. All of the samples that had high contaminant concentrations
were collected in Bayou Chico; none came from Apalachicola Bay, as expected. All stations except number 1-2
in the upper reach of Bayou Chico had particularly high chemical concentrations. The average of the cumulative
ERM quotients among the three samples from Apalachicola Bay was 0.6 (range = 0.3 to 1.0), considerably lower
than the average cumulative ERM quotient for the six Bayou Chico samples (10.6, range = 1.9 to 14.2).

Comparisons between chemical concentrations in toxic and non-toxic samples could not be performed with
amphipod test results because only one sample was classified as toxic. Conversely, all samples were identified
as toxic in the Microtox™ tests, providing no non-toxic samples for comparisons. In the urchin development
tests only two samples were classified as non-toxic. Therefore, comparisons between toxic and non-toxic samples
were restricted to the data from the urchin fertilization tests, in which three samples analyzed for chemistry were
non-toxic and six were toxic in 100% porewater.

The average concentrations of many substances were elevated in the toxic samples as compared to the non-
toxic samples from Bayou Chico and Apalachicola Bay (Table 22). Numerous individual PAHs occurred in high
concentrations in the toxic samples; the sums of the low and high molecular weight compounds and all com-
pounds listed in Table 22 reflect this pattern. Expressed in units of organic carbon, the concentrations of three
individual PAHSs for which national criteria have been developed, were particularly elevated in the toxic samples.
The average concentrations of the low and high molecular weight PAHs in the toxic samples exceeded the ERL,
TEL, and PEL concentrations, indicating a relatively high probability that they contributed to toxicity.
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The concentrations of zinc were remarkably high in many samples, including those that were toxic in the urchin
fertilization tests (Table 22). They exceeded both the ERM and PEL concentrations, the only substance that did
so in Bayou Chico. Also, noteworthy were the concentrations of lindane, heptachlor epoxide, several isomers of
DDT, total PCBs, and lead which occurred in moderately elevated concentrations in the toxic samples.

In summary, although Spearman-rank correlations failed to show significant correlations between toxicity in
samples from Bayou Chico and Apalachicola Bay, there were numerous obvious associations between elevated
chemical levels and toxicity. The concentrations of zinc and many organic compounds, notably the PAHs and to
a lesser extent some chlorinated organic hydrocarbons, were relatively high in these samples, especially those
that were toxic in the urchin fertilization tests. The toxicity of one sample with high chemical concentrations may
have been inhibited by high concentrations of organic carbon which may have reduced the bioavailability of the
organic compounds.

Choctawhatchee Bay. Spearman-rank correlations for Choctawhatchee Bay samples are listed in Table 23.
Amphipod test results were significantly correlated with only the concentrations of total indeno-type pesticides.
However, this correlation was positive, not negative as expected, and therefore meaningless. The Microtox™
tests were not significantly correlated with any chemical concentrations. In the amphipod tests, only one sample
was significantly different from controls and none were highly toxic. In Microtox™ tests, all samples were highly
toxic, thus providing no meaningful toxicity gradients with which to compare chemical concentrations. Sea ur-
chin embryo development was significantly correlated with the concentrations of only un-ionized ammonia and
two individual PAHSs (fluoranthene, phenanthrene) expressed in units of organic carbon (Table 23). None of the
other substances were significantly correlated with the results of this toxicity test.

In the urchin fertilization tests, results were significantly correlated with the concentrations of numerous indi-
vidual trace metals, the sum of the trace metals/ERMs quotients, the sum of 5 simultaneously-extracted metals
(SEM), the sum of 5 SEM minus total AVS, many individual PAHs, the sums of classes of PAHs, the sum of 13
PAHs/ERMs quotients, numerous chlorinated hydrocarbons, total PCBs, and the sum of all 25 chemical concen-
trations/ERM quotients (Table 23). Expressed in units of dry wt., phenanathrene and fluoranthene were signifi-
cantly correlated with urchin fertilization; however, when expressed in units of organic carbon, neither were
significantly correlated with these test results.

The incidence of toxicity was similar in the urchin fertilization and embryological tests (46% and 43%, respec-
tively). However, the toxicity/chemistry correlations differed considerably between them.

Five samples from Choctawhatchee Bay (those from station A1-1 in Cinco Bayou, C3-1 in Garnier Bayou, D3-1
in Destin Harbor, and F1-1 and F2-1 in Tom’s Bayou) had chemical concentrations that exceeded guideline
values (Table 24). Concentrations of silver and several DDT isomers were elevated in the samples from Tom’s
Bayou and concentrations of four individual PAHs and total PAHs were elevated in the sample from Cinco
Bayou. In addition, the concentrations of un-ionized ammonia exceeded the LOEC concentration (90 ug/l) for
urchin embryo development in two samples (B3-1 and K2-1).

Average concentrations of chemicals in non-toxic and toxic samples were compared for the urchin fertilization
tests (Table 25). Equivalent analyses of the data for the other tests could not be performed because the data
either showed toxicity in all samples (Microtox™) or too few samples (urchin development, amphipod survival)
to provide comparison groups. Average concentrations of silver, dieldrin, DDT isomers, and total DDT were
considerably higher in the toxic samples than in the non-toxic samples (ratios of about 20.0 of higher). Concen-
trations of many trace metals and PAHs were elevated in the toxic samples. However, concentrations of all
substances were not very high compared to the sediment quality guidelines. None of the average concentra-
tions in toxic samples equalled or exceeded respective PEL, ERM, or SQC values. These concentrations often
approximated or were only slightly higher than the respective TEL or ERL values.

Although concentrations of silver were considerably higher in the toxic samples than in the non-toxic samples,
average concentrations in the toxic samples were lower than the ERL and TEL values (Table 25). The same
situation occurred with cadmium, zinc, the sum of low molecular weight PAHSs, dieldrin, and total PCBs. Among
the substances analyzed, the sum of DDT isomers was most elevated in concentration in toxic samples: aver-
age concentrations in toxic samples exceeded both the ERL and the TEL by factors of 11.4 and 4.7, respectively.

27



The relationship between results of the sea urchin fertilization tests and the concentrations of total DDT in
sediments is illustrated in Figure 80. Fertilization success decreased remarkably with increasing concentrations
of DDT. All samples with DDT concentrations that exceeded the TEL value were highly toxic in this test. Fertiliza-
tion success was zero in the sample with the highest concentration of total DDT. The Spearman-rank correlation
showed a significant association between fertilization success and total DDT.

The association between urchin embryo development and un-ionized ammonia was significant; the resulting
scatterplot showed a pattern of decreasing normal development with increasing ammonia concentrations (Fig-
ure 81). Two samples either equalled or exceeded the lowest observed effects concentration (LOEC) of 90 ug/
I and both were highly toxic in this assay.

In summary, the associations between toxicity and concentrations of potentially toxic substances in
Choctawhatchee Bay were strongest for the urchin fertilization tests in which a large gradient in response was
observed. Microtox™ and amphipod test results were not negatively correlated with any substances. Urchin
embryo development test results were correlated with only three substances: un-ionized ammonia and two
individual PAHSs. In sharp contrast, numerous substances were correlated with urchin fertilization. Most notable
among these were the concentrations of DDT isomers, total DDT, silver, the sum of PAHs, and dieldrin. How-
ever, the concentrations of these substances exceeded TEL and ERL values by small amounts and rarely
equaled or exceeded respective PEL and ERM values. Therefore, there is insufficient evidence to suggest which
measured substances may have contributed substantially to toxicity. As in the other bays, mixtures of contami-
nants and unmeasured compounds may be culprit in their contribution to toxicity.

St. Andrew Bay. Of the 30 samples collected within St. Andrew Bay, organic compounds were quantified in all
samples, total organic carbon and grain size were determined in 25 samples, and both total trace metals in bulk
sediments and simultaneously extracted metals in acid volatile sulfides were measured in 22 samples.

Percent amphipod survival was significantly correlated with concentrations of copper, two isomers of DDT, total
DDT, and total pesticides (Table 26). The relationship between amphipod survival and copper is consistent with
the copper/aluminum plot which indicates a high incidence of anthropogenic enrichment for copper in this area.
Given that none of the samples was significantly toxic in this test and test results were relatively similar among
all samples, these correlations were unexpected. The relationship between amphipod survival and total DDT
concentrations is illustrated in Figure 82. Although most of the samples showed a pattern of decreasing amphi-
pod survival with increasing total DDT concentrations, three samples in which amphipod survival was relatively
high had elevated concentrations of DDT. The sample with the highest DDT concentration was collected in
upper Massamino Bayou and probably had a high concentration of TOC (no analyses were performed). The
concentration of total AVS was highest recorded among all St. Andrew Bay samples (>29 umoles/g). Some
samples exceeded respective ERM values (Long et al., 1995) and PEL values (MacDonald, 1994), including
several that were not toxic.

Concentrations of un-ionized ammonia were significantly correlated with toxicity to sea urchin development in
100% porewater (Table 26). This correlation was highly significant and showed a strong pattern of decreasing
normal development with increasing ammonia concentrations (Figure 83). Samples were invariably toxic (less
than 80% normal development) when un-ionized ammonia concentrations exceeded 40 ug/l. Furthermore, per-
cent normal development was zero when un-ionized ammonia concentrations exceeded the LOEC of 90 ugl/I.

Results of the sea urchin fertilization tests were significantly correlated with many trace metals, the sum of the
nine metals concentrations-to-ERM quotients, un-ionized ammonia, several DDT isomers, and the sum of the
three chlorinated organic hydrocarbon-to-ERM ratios (Table 26). The relationship between sea urchin fertiliza-
tion and zinc (Figure 84) is typical of that for the other trace metals. In four of the samples, fertilization success
decreased with increasing zinc concentrations; however, in the other samples fertilization success remained
relatively high despite exposure to elevated zinc concentrations.

The correlation between sea urchin fertilization and un-ionized ammonia was significant (Table 26). There was
a strong pattern of decreasing fertilization success with increasing ammonia concentrations. However, none of
the samples equalled or exceeded the LOEC concentration (800 ug/l) for this test (Figure 85), suggesting that
this substance occurred at concentrations well below that which would have been expected to contribute to
toxicity.
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Microbial bioluminescence tests were significantly correlated with many substances (Table 26), including many
trace metals, many chlorinated organic compounds, and all classes of PAHs. In addition, test results were
correlated with the sums of the three classes of ERM quotients (9 metals, 3 chlorinated compounds, 13 PAHS).
These data indicated that the Microtox™ test was sensitive to complex mixtures of substances in the sediments,
many of which co-varied with each other. The correlation with trans-nonachlor was the strongest observed (Rho
=-0.722, p<0.0001) and the data showed a strong pattern of association (Figure 86). The Microtox™ data were
scattered at trans-nonachlor concentrations below 0.5 ng/g. As the concentrations of this substance increased,
however, microbial bioluminescence EC50 values decreased markedly. Sample 53 had the highest trans-nonachlor
concentration (9 ng/g) and was the most toxic to microbial bioluminescence.

The relationship between the sum of the 25 chemical concentration-to-ERM quotients and microbial biolumines-
cence is illustrated in Figure 87. This chemical index accounts for variability among 25 substances in the samples,
including 9 trace metals, 3 chlorinated organic compounds, and 13 PAHSs, and, therefore, integrates the potential
contributions of all of these substances in mixtures to the measure of toxicity. The index calculated with the ERM
values was correlated with the microbial bioluminescence test results and the data showed a strong pattern of
association (Figure 87). The two least toxic samples had among the lowest ERM index values and the most toxic
sample (station 53) had the highest index value.

Sampling stations in which chemical concentrations equalled or exceeded either interpretive guideline values or
toxicity thresholds are listed in Table 27. PEL values generally were lower than the corresponding ERM values,
therefore, more samples exceeded the PELs than the ERMs (Table 27). Concentrations of several trace metals,
PAHSs, and chlorinated compounds exceeded the respective ERM values in the sample collected at station 53.
Chemical concentrations in sample 53 as well as several others exceeded the respective PEL values. Chemical
concentrations often were elevated in samples 53, 54, 56, 57, and 58. Among the chemicals that were quanti-
fied, the concentrations of DDT isomers (particularly p, p’-DDD) were most frequently elevated relative to the
guidelines. The concentrations of un-ionized ammonia were elevated in five samples relative to the LOEC for
the sea urchin development test (90 ug/l), in one sample relative to the NOEC for the amphipod test (236 ug/l),
however, none of the samples exceeded the LOEC (800 ug/l) for the sea urchin fertilization test.

The co-occurrence analyses of these data in which average chemical concentrations in toxic and non-toxic
samples are compared was not performed with the St. Andrew Bay data. There were no samples that were toxic
to amphipods, all samples were toxic to Microtox™, only ammonia was correlated with sea urchin development,
and only four samples were toxic to sea urchin fertilization. Therefore, we chose to forego these analyses with
these data.

In summary, the four toxicity end-points measured in St. Andrew Bay appeared to co-vary with different sub-
stances in the samples. Despite significant correlations between amphipod survival and the concentrations of
copper and DDT, none of the bioassay results were significantly different from controls. Sea urchin development
was significantly correlated only with un-ionized ammonia in the porewater and zero percent normal develop-
ment occurred in some samples with relatively high ammonia concentrations. Urchin fertilization was correlated
with a number of trace metals, DDT, and ammonia and the concentrations of some metals and DDT exceeded
numerical guideline values. Microtox™ test results were highly correlated with complex mixtures of substances,
including many trace metals and organic compounds. Microtox™ test results showed a strong association with
the cumulative ERM quotients, again, suggesting that microbial bioluminescence responded to complex mix-
tures of substances in the organic solvent extracts.

All Areas Combined. To determine if any of the toxicity/chemistry relationships observed in the individual bays
also were significant throughout the entire study area, the data from all four bays were combined and correla-
tions were calculated. Correlations between bioassay results and chemical concentrations for all 102 western
Florida samples are summarized in Table 28. No data are included for the amphipod tests because none of the
correlations were significant. Correlations are shown for major elements, classes of organic compounds, and
organic compounds for which national sediment quality criteria have been proposed.

In the Microtox™ tests, the strongest correlations were noted with concentrations of total DDT, total pesticides,
and the sum of the chlorinated hydrocarbon/ERM quotients (Table 28). Concentrations of five trace metals, the
sums of classes of individual PAHs, and total PCBs were correlated with Microtox™ results. The sums of all 25
chemicals/ERM quotients were correlated with toxicity in this test, although the correlation with the sums of the
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9 metals/ERM quotients were not significant. Likewise, correlations with the sums of the 5 simultaneously-
extracted metals were not significant. Among the strongest correlations was that of Microtox™ test results and
the concentrations of total DDTs (Figure 88). Microtox™ results showed considerable scatter and variability at
DDT concentrations below the PEL value of 51.7 ppb; however, as DDT concentrations increased above 51.7
ppb, all samples showed very high toxicity in this test. Two samples from Tom’s Bayou adjacent to Choctawhatchee
Bay had the highest DDT concentrations and were highly toxic in the microbial bioluminescence tests.

Urchin fertilization was highly correlated with the sum of concentrations of all PAHs (“sum all PAHs”, Table 28).
This sum included the parent aromatic hydrocarbons (sum PAHs) and many classes of substituted compounds,
including alkylated- and methylated-compounds, and sulfurous compounds. The data illustrated in Figure 89
display a pattern of decreasing fertilization success in samples with total PAH concentrations of approximately
25000 or greater. There is no ERM or PEL value for the sum of all PAHs. Fertilization success also was signifi-
cantly correlated with the concentrations of un-ionized ammonia, and to a lesser degree, many trace metals,
total DDT, and the sum of the 25 chemical/ERM quotients.

Urchin development was highly correlated with un-ionized ammonia in the porewater test chambers (Table 28).
This was the highest and most significant correlation coefficient observed for the combined data set. The data
illustrated in Figure 90 show a sharp decrease in normal embryo development as un-ionized ammonia concen-
trations approach and exceed the LOEC concentration of 90 ug/l. Ten of the 102 samples exceeded the un-
ionized ammonia LOEC concentration and all were highly toxic in tests of 100% porewater. Urchin embryo
development also was correlated with the concentrations of copper, selenium, zinc, the sum of all PAHs, two
individual PAHs normalized to organic carbon, and dieldrin normalized to organic carbon.

DISCUSSION

This survey was conducted over a two-year period in the late spring of both 1993 and 1994 and extended
throughout four large bays and adjoining bayous in the panhandle of western Florida. The objectives of the
survey were to determine: (1) spatial patterns in toxicity throughout each bay, (2) the spatial extent of toxicity
throughout and among bays, (3) the severity or degree of toxicity, (4) and relationships between chemical con-
tamination and toxicity. Surficial sediments were collected to represent the quality of recently-deposited sedi-
ments. Four toxicity tests were conducted on each of the 123 samples collected in the four bays. A fifth toxicity
test for genotoxic response was performed on samples collected in 1994. Chemical analyses were done on
most (102) of the samples.

Chemical Concentrations in Sediments. Before the survey was conducted, chemical data available from
previous studies in this region were reviewed to identify areas (including “hotspots”) that contained levels of
contaminants (and mixtures of contaminants) that had high potential to cause harm in marine ecosystems.
These historical chemistry data indicated that toxicant concentrations were relatively high in the urbanized bay-
ous of Pensacola, Choctawhatchee, and St. Andrew bays. Chemical concentrations were particularly high in
Bayou Chico, and to a lesser degree, Watsons Bayou, Bayou Texar, Garnier Bayou, Boggy Bayou, and Massamino
Bayou.

In these previous studies, concentrations of total DDT and other chlorinated organic hydrocarbons were ex-
tremely high at some locations in Choctawhatchee Bay. Other substances reported as occurring in high concen-
trations at several locations in the study area included lead, arsenic, other trace metals, total PCBs, and total
PAHs. The hypothesis was, then, that in the presence of elevated toxic chemical concentrations, we would
expect concomitant elevated incidence and severity of toxicity in these urbanized bayous.

Stratified-random sampling designs similar to the probabalistic designs of EPA’'s Environmental Monitoring and
Assessment Program (EMAP), were used in the selection of sampling stations. Samples were collected both
from strata with historically high to moderate chemical concentrations, where toxicity was expected, and from
strata in which historic chemical concentrations were low, therefore, where toxicity was not expected.

Sediment chemistry data from this survey indicated concentrations of total PCBs, total pesticides, and total

DDTs differed considerably among the four bays. Samples from Pensacola, St. Andrew, and Choctawhatchee
bays had considerably higher concentrations of these compounds than samples from Apalachicola Bay. A simi-
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lar pattern was evident with lead. Total mercury showed a different spatial distribution; concentrations of mercury
were relatively high in samples from Pensacola and St. Andrew bays, intermediate in Choctawhatchee Bay, and
lowest in Apalachicola Bay. Concentrations of PAHs were relatively high in samples from Pensacola Bay (espe-
cially in Bayou Chico), intermediate in samples from St. Andrew and Choctawhatchee bays, and lowest in
samples from Apalachicola Bay. The maximum and minimum concentrations of total PAHs differed among all
samples by over four orders of magnitude.

Some regions were clearly more contaminated with complex mixtures of substances than others. In Pensacola
Bay, concentrations of PAHs, PCBs, mercury, and lead were elevated in three urban bayous (Bayou Chico,
Bayou Texar, and Bayou Grande) when compared to the main basin of the system. Samples from Bayou Chico
had especially high concentrations of many substances. In Choctawhatchee Bay, a similar pattern was evident;
chemical concentrations were highest in the adjoining bayous (Garnier Bayou, Rocky Bayou, and Boggy Bayou)
and lowest in the main basin of the bay. Chemical concentrations in St. Andrew Bay were highest in Watson’s
Bayou and Massamino Bayou when compared to other regions of the system. No clear pattern in contamination
was evident in Apalachicola Bay, as all samples had relatively low chemical concentrations.

Based upon normalization to aluminum content (Schropp et al., 1990 ; Schropp and Windom, 1988), trace
metals concentrations in all bays sampled during this survey except Apalachicola Bay were anthropogenically
enriched. Pensacola Bay and Bayou Chico had the highest number of exceedances of background concentra-
tions overall, followed by Choctawhatchee and St. Andrew Bays. The chemicals that most frequently exceeded
background levels were cadmium, copper, lead, mercury and zinc. In addition, many substances equalled or
exceeded effects-based, numerical guidelines (PEL and/or ERM values), indicating a high probability that they
contributed to toxicity. Samples with chemical concentrations higher than effects-based numerical guidelines
would be more likely to be toxic than those with all chemical concentrations below these levels. Notable among
these substances were zinc, many individual PAHs, several isomers of DDT, total DDT, total PCBs, and union-
ized ammonia. Overall, the chemical data suggested that toxicity would be most probable and severe in Bayou
Chico, somewhat less likely and severe in the other urban bayous, and least likely in the main basins of all four
bays.

Incidence and Severity of T oxicity . Surficial sediment samples were collected from 123 randomly-chosen
locations throughout the four bays. Toxicity was determined using a battery of four laboratory tests performed on
all samples: (1) percent survival of marine amphipods (Ampelisca abdita) in 10-day tests of solid-phase (bulk)
sediments; (2) changes in bioluminescent activity of a marine bacterium, Photobacterium phosphoreum, in 5-
minute assays of organic extracts; (3) fertilization success of the sea urchin Arbacia punctulata in one hour tests
of the sediment porewater; and (4) normal embryological development of A. punctulata in 48-hour tests of the
porewater. In addition, the Mutatox™ variant of the microbial bioluminescence test was performed on samples
collected in Year 2 from Bayou Chico, Choctawhatchee and Apalachicola bays. The incidence and severity of
toxicity differed considerably among the four tests and among the four bays.

Amphipod solid phase assay. The amphipod survival test showed a general lack of toxicity in all bays. From the
total 123 samples, only 2.4% were toxic (i.e., significantly different from controls) and 0.8% were highly toxic
(significantly different from controls and less than 80% of controls). Therefore, no spatial patterns in toxic effects
could be measured from the results of this test. Only three stations throughout all four bays were significantly
toxic in the amphipod test; one in Apalachicola Bay, one in Choctawhatchee Bay, and one in Bayou Chico in the
Pensacola Bay estuary.

Microtox™. In sharp contrast, the data from the Microtox™ tests indicated that the majority of the samples from
the four bays were toxic; 114 (92.7%) of 123 samples were significantly different from controls. In all but one of
these samples the test response was less than 80% of the controls. Test results ranged from <1.0% to >100% of
control responses. Microbial bioluminescence EC50’s were less than 10% of controls in 79 (64%) of the 123
samples. All except one sample from Apalachicola Bay were toxic and all except eight samples from Pensacola
Bay were toxic. Nontoxic samples came from an upstream station in the Apalachicola River, several stations
near the mouth of Pensacola Bay, and several stations scattered throughout Pensacola Bay.

Mutatox™.An analysis of Mutatox™ results revealed that 65.4% of the samples tested produced either a sus-
pect (S category) or genotoxic (G category) test result and 40.4% produced a strong genotoxic response. All
stations tested in Bayou Chico showed a genotoxic response. In contrast, only one of the nine samples from
Apalachicola Bay showed a genotoxic response and five of the samples showed no genotoxicity.
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Sea urchin fertilization. The incidence of toxicity in the urchin fertilization tests (100% porewater) was 10% in
Pensacola Bay, 83.3% in Bayou Chico, 56.8% in Choctawhatchee Bay, 12.9% in St. Andrew Bay, and 44.4% in
Apalachicola Bay. In 100% porewater, urchin fertilization was less than 50% in eight samples from Choctawhatchee
Bay. Overall, among all 123 samples, 30.9% were toxic in this test. In 100% porewater, urchin fertilization
ranged from 0.2% to 99.8% of controls. The overall incidence of toxicity diminished gradually in 50% and 25%
porewater sample dilutions to 16.3% and 10.6%, respectively. However, in Bayou Chico 5 of 6 (83.3%) of the
samples were both significantly toxic and highly toxic in all porewater concentrations; in addition, urchin fertiliza-
tion was less than 1.0% of controls in 5 of the 6 samples of 100% porewater.

Sea urchin development.. Urchin development tests showed a wide range in test results. In tests of 100%
porewater, normal urchin development was 0.0% in nine of twelve samples from Bayou Chico and in one sample
from Bayou Texar. Zero normal development in 100% porewater also was observed in some samples from
peripheral bayous of St. Andrew Bay and Choctawhatchee Bay. The two most toxic samples tested, both col-
lected in upper Bayou Chico, showed zero normal development in all porewater concentrations. Overall, there
was a relatively high incidence of toxicity in Choctawhatchee Bay (48.6%), Apalachicola Bay (44.4%) and Bayou
Chico (100%) in the embryo development tests as compared to Pensacola Bay (27.5%) and St. Andrew Bay
(22.6%). Among the 123 samples tested, a total of 46 (37%) were toxic in at least 100% porewater, a slightly
higher proportion than observed in the fertilization tests.

Overall, the highest incidence of toxicity among all tests combined occurred among the Bayou Chico samples,
followed by Choctawhatchee Bay, and the other areas. All of the Bayou Chico samples were toxic in the sea
urchin development, Microtox™, and Mutatox™ tests; all were highly toxic in the urchin development and
Mutatox™ tests; and all except one sample were highly toxic in the urchin fertilization tests. In addition, the only
sample that was highly toxic in the amphipod survival tests was collected in Bayou Chico. In Choctawhatchee
Bay all samples were toxic in Microtox™ tests, most were toxic in Mutatox™ tests, 57% were toxic in urchin
fertilization tests, 49% were toxic in urchin development tests, and one sample was toxic in the amphipod tests.
The incidence of toxicity in Pensacola Bay and St. Andrew Bay was relatively similar: zero and one sample toxic
in amphipod tests (respectively); 10% and 13% toxic in urchin fertilization tests; 27% and 23% toxic in urchin
development tests; and 80% and 100% toxic in Microtox™ tests, respectively. Among all areas included in this
survey, Apalachicola Bay had the lowest incidence of toxicity in all tests.

Spatial Extent of T oxicity . The data from the toxicity tests were weighted to the sizes of the strata within which
they were collected. Therefore, the spatial significance of the toxicity could be estimated. Estimates of the
spatial extent of toxicity were developed for all four bioassays for each of the four bays and for the entire survey
area combined. Bioassay results that were less than 80% of control responses were treated as “toxic” in these
calculations. The entire survey area encompassed approximately 840 km?.

These data suggest that amphipod survival was affected in a tiny portion of the entire study area (0.005%), and
in sharp contrast, microbial bioluminescence was affected in nearly all of the area (98.9%). Both sea urchin
fertilization and embryo development were affected in nearly one-half of Choctawhatchee Bay, and small por-
tions of St. Andrew and Pensacola bays. In Apalachicola Bay, the majority of the area was affected in the
development tests, whereas about one-third was affected in the fertilization tests. Throughout the entire study
area, 23% was toxic in fertilization tests and 34% was toxic in the development tests. Usually, small portions of
each bay were affected in both tests of 50% and 25% porewater.

As part of its Environmental Monitoring and Assessment Program (EMAP), U.S. EPA estimated that 7% of the
Louisianian estuarine province, which includes the western Florida panhandle, was toxic in laboratory tests with
Ampelisca abdita (Summers et al., 1993). The Louisianian province extends from the Rio Grande, Texas to
Anclote Key, Florida. The considerable difference in the estimated areas of toxicity (7% by U.S. EPA and 0.005%
by this study) is probably attributable to the differences in the two survey areas. In the EMAP-E studies, U.S.
EPA included large riverine systems, especially the Mississippi River, and other urbanized regions that may be
contaminated in their survey area, whereas in this study the survey area was restricted to four large bays of
which only relatively small portions were highly urbanized. Nevertheless, both estimates suggest that toxicity as
determined with the amphipod acute survival test was not extensive.

Spatial Patterns in T_oxicity . Concordance among bioassay results was relatively poor and the four tests showed
overlapping, but different patterns in toxicity. Spearman-rank correlations among tests were significant in only
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three of 24 combinations of results. The most consistent correlations were those: (a) between sea urchin fertili-
zation and microbial bioluminescence, (b) between the Mutatox™ and Microtox™ tests and (c) between both of
the sea urchin tests.

Toxicity in the Microtox™ tests was pervasive, extending throughout most or all of each bay. All of the samples
from Choctawhatchee Bay, St. Andrew Bay, and Bayou Chico were significantly different from controls. Mean
EC50 values were lowest, indicating highest toxicity, in samples from Bayou Chico and inner Pensacola Harbor
in Pensacola Bay; Garnier Bayou, Destin Harbor, Boggy Bayou, Tom’s Bayou, and Rocky Bayou in
Choctawhatchee Bay; and Watsons Bayou and other portions of St. Andrew Bay. Therefore, toxicity in these
tests followed the patterns often predicted by the available chemistry data from previous studies. Toxicity was
relatively low in Apalachicola Bay compared to the other bays.

No spatial patterns in Mutatox™ test results were evident in Bayou Chico, since all samples collected in 1994
were genotoxic. In Choctawhatchee Bay, genotoxic samples were most evident in the adjoining bayous, includ-
ing Destin Harbor (D stations), Joe's Bayou (H stations), the two arms of Garnier Bayou, Boggy Bayou, Rocky
Bayou, and La Grange Bayou. Most of the “M” and “N” series stations in the main basin of the bay were not
genotoxic, and the three stations sampled near the north shore were suspected as genotoxic. One sample from
Apalachicola Bay determined to be genotoxic was collected near the mouth of the Apalachicola River. Three
samples, one from each sampling stratum in Apalachicola Bay, were suspected as genotoxic. Two samples
collected near the mouth of the bay were not toxic.

The results of the sea urchin fertilization tests showed relatively high toxicity in several bayous of Choctawhatchee
Bay, Watsons Bayou in St. Andrew Bay, and Bayou Chico of Pensacola Bay compared to the other areas, and
relatively low toxicity in most of the main basin stations of Pensacola and St. Andrew bays. Most of the 1994
samples from Bayou Chico were highly toxic in all porewater concentrations, whereas none collected in 1993
was toxic in any porewater concentrations. Two samples each in the lower Apalachicola River and lower
Apalachicola Bay were toxic in 100% porewater.

Stations exhibiting toxicity in the embryo development tests were largely associated with urbanized tributaries to
the bays in all cases except Apalachicola Bay. Toxicity was especially apparent in Bayou Chico, Watson Bayou,
the Pensacola Harbor, Destin Harbor, and portions of Garnier Bayou.

Toxicity/Chemistry Relationships.  The relationships between toxicity measured in the four bioassays and
solid-phase (bulk) sediment chemistry were explored in a multistep approach. The causes of toxicity could not
be determined in these studies. Additional, experimental work would be needed to tease out the substances that
caused or significantly contributed to toxicity. Instead, the relative probability or likelihood of different substances
contributing to toxicity was determined with analyses of the matching toxicity and chemistry data. Data from
each of the four bays were treated separately to identify bay-specific toxicity/chemistry relationships and the
data from all areas were combined to identify broad-scale relationships, if any.

In all cases, there was no single chemical or class of chemicals that stood out from the others as the primary
cause of toxicity. The chemicals that were most associated with toxicity differed among the four bays. Further-
more, chemicals most associated with toxicity differed among the four different toxicity tests. In all cases it was
apparent that complex mixtures of substances co-varied with toxicity and probably contributed to the toxic re-
sponses.

In Pensacola Bay, zinc, high molecular weight PAHs, two DDD/DDT isomers, total DDT, and dieldrin were most
closely associated with toxicity. To a lesser extent, cadmium, copper, lead, low molecular weight PAHs, and in
the case of urchin embryo development, unionized ammonia, were moderately associated with toxicity. The
significant correlations between three measures of toxicity (Microtox™, urchin fertilization, urchin development)
and cumulative ERM quotients suggests that these substances acted together in complex mixtures to contribute
to toxicity. In addition, high levels of nitro aromatic compounds were found in samples that masked much of the
PAH signal, and were not accounted for in the analyses of chemistry/toxicity correlations.

Spearman-rank correlations failed to show significant correlations between toxicity in samples from Bayou Chico

and Apalachicola Bay, probably largely because of the small sample sizes. However, there were numerous
obvious (but nonsignificant) associations between elevated chemical levels and toxicity. The concentrations of
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zinc and many organic compounds, notably the PAHs and to a lesser extent some chlorinated organic hydrocar-
bons, were relatively high in these samples, especially those that were toxic in the urchin fertilization tests. The
toxicity of one sample with high chemical concentrations may have been inhibited by high concentrations of
organic carbon which may have reduced the bioavailability of the organic compounds. Samples from Bayou
Chico had considerably higher chemical concentrations than those from Apalachicola Bay, as expected, and
often higher concentrations than applicable numerical guidelines.

In Choctawhatchee Bay, the associations between toxicity and concentrations of potentially toxic substances
were strongest for the urchin fertilization tests in which a large gradient in response was observed. Amphipod
and Microtox™ test results were not correlated with any substances. Urchin embryo development test results
were correlated with only three substances: unionized ammonia and two individual PAHs. In sharp contrast,
numerous substances were correlated with urchin fertilization. Most notable among these were the concentra-
tions of DDT isomers, total DDT, silver, the sum of PAHs, and dieldrin. However, the concentrations of these
substances exceeded TEL and ERL values by relatively small amounts and rarely equaled or exceeded respec-
tive PEL and ERM values. Therefore, there is insufficient evidence to suggest which substances individually
may have contributed substantially to toxicity.

The four toxicity endpoints measured in St. Andrew Bay appeared to co-vary with different substances in the
samples. Despite significant correlations between amphipod survival and the concentrations of copper and
DDT, none of the bioassay results were significantly different from controls. Sea urchin development was signifi-
cantly correlated only with unionized ammonia in the porewater and zero percent normal development occurred
in some samples with relatively high ammonia concentrations. Urchin fertilization was correlated with a number
of trace metals, DDT, and ammonia and the concentrations of some metals and DDT exceeded numerical
guideline values. Microtox™ test results were highly correlated with complex mixtures of substances, including
many trace metals and organic compounds. Microtox™ test results showed a strong association with the cumu-
lative ERM quotients, again suggesting that microbial bioluminescence responded to complex mixtures of sub-
stances in the organic solvent extracts.

Although toxicity/chemistry relationships differed considerably among the four tests and four bays, there were a
few common threads in these associations. In all four bays, the concentrations of selected trace metals (notably
zinc, silver, and copper), DDT and its isomeric derivatives, and selected PAHs were associated with at least one
measure of toxicity. Also, dieldrin and unionized ammonia showed associations with toxicity. In Pensacola Bay
and St. Andrew Bay the cumulative ERM index, which takes into account the concentrations of 24 substances,
showed a strong association with toxicity.

Some of the common associations observed in each bay were borne out in the correlations performed with the
combined toxicity/chemistry data set of 102 samples. Microtox™ test results were highly correlated with the
concentrations of chlorinated compounds, including DDTs, PCBs, and total pesticides. To a lesser degree
Microtox™ test results were also significantly correlated with the concentrations of some trace metals and PAHSs.
Urchin fertilization was highly correlated with the concentrations of PAHs, numerous trace metals, and DDT.
Urchin embryo development was primarily correlated with the concentrations of unionized ammonia, and to a
lesser degree, PAHSs, three trace metals, and one pesticide, dieldrin. It is significant that the results of the
Microtox™ and urchin fertilization tests were significantly correlated with the sum of the cumulative ERM quo-
tients, since these quotients account for the contribution of 25 different substances to toxicity. The correlations
strongly suggest that mixtures of toxicants, co-varying with each other, contributed significantly to the observed
toxicity. This association, on the other hand, was not observed in the embryo development tests, in which
ammonia was obviously a likely contributor to toxicity.

The differences in toxicity/chemistry relationships among the bays and toxicity tests are expected and have
been observed in previous studies in other major estuaries of the USA (Long et al., 1994; 1996). The species of
organisms used in the toxicity tests often display different responses to the many substances that occur in
sediments. Different species have different responses to the same chemicals. The amphipod, sea urchin, and
microbial bioluminescence toxicity tests were performed with three different phases of the sediments; the solid-
phase, porewater phase, and an extract prepared with an organic solvent. Therefore, substances bound to the
sediment particles are expected to differ in their relative bioavailability - and toxicological response - among the
different phases. Finally, there is a strong possibility that the substances quantified in the chemical analyses co-
varied with mixtures of chemicals that were not quantified. It is likely that in any survey, including the present
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study, that there will be other unmeasured constituents that can add significantly to the toxic response, with no
way to account for the extent of the contribution.

Relevance of Different T oxicity T ests. The ecological significance of sediment toxicity tests performed with
amphipods has been established in correlative sediment quality studies performed elsewhere, including Com-
mencement Bay, the Palos Verdes shelf and San Francisco Bay, California (Swartz et. al., 1982, 1986, 1994,
respectively). Those studies indicated that resident benthic communities often were altered at locations shown
to be highly toxic to the amphipod Rhepoxinius abronius in laboratory tests. Alterations to resident communities
usually consisted of diminished abundance or a lack of certain sensitive crustacean groups, especially burrow-
ing amphipods, relative to stations with high amphipod survival in laboratory tests. Other studies in San Fran-
cisco Bay (Chapman et. al., 1987) and Puget Sound (Long and Chapman, 1985) have shown similar results;
that is missing or depauperate crustacean abundances in stations shown to be toxic in laboratory tests to amphi-
pods. In Tampa Bay, some stations in which toxicity to Ampelisca abdita was observed had severely diminished
benthic populations, but some of these alterations may have been attributable to local hypoxic conditions (Coastal
Environmental, Inc., 1966). In estuaries, benthic populations are under frequent stress from short-term changes
in salinity, cyclical hypoxia and/or ammonia events, and other natural factors such as depth, slope, sediment
texture, and predators. Therefore, attribution of benthic population changes to only anthropogenic toxicants, as
suggested in laboratory toxicity tests, is a difficult analytical step. Consequently, some have argued that toxicity
tests are sufficiently robust to stand alone without the need for accompanying benthic data (Chapman, 1995).

Field validation data for the urchin and Microtox™/Mutatox™ tests currently are not available. However, in
Tampa Bay the areas in which toxicity was most severe in both these and the amphipod tests had the most
severely altered benthic populations (Coastal Environmental, Inc., 1996). Fertilization and developmental tests
of urchin gametes and embryos exposed to the porewaters provide highly sensitive assays of sediment samples.
These tests combine evidence of the disruption in essential reproductive functions in the test animals with
exposures to the porewater in which toxicants are mainly in a dissolved state and, therefore, readily bioavailable.
These are sublethal test endpoints, not acute toxicity tests. They can be viewed as indicators of slightly to
moderately degraded conditions that, if allowed to deteriorate, may lead to toxicity expressed in the acute am-
phipod tests. They should be considered as important instruments for environmental managers in the prevention
of further harm to environmental quality. As expected, based upon experience in previous surveys, these two
tests showed more sensitivity than the amphipod tests.

The highly sensitive Microtox™ test can be best viewed as an indicator of the potential for biological effects.
Because the tests are performed with solvent extracts of the sediments, all solvent-extractable substances in
the samples are potentially drawn out or extracted from the sediment matrix, and, therefore, artificially made
bioavailable in the tests. Therefore, the test organisms are probably exposed to a greater dose of toxicants than
the amphipods or urchins. In addition, the test is conducted with an assay of metabolic activity, not acute mortal-
ity, as in the amphipod tests. This test, therefore, is expected to be triggered by much lower chemical concentra-
tions than the other assays. These microbial tests can be regarded as a flag or precursor for further harm in the
environment. The Mutatox™ variant of this test indicates the presence of potentially mutagenic substances in
the samples, most of which are not highly toxic in acute mortality tests, but would be highly problematic when
one considers long-term impacts to a healthy, well balanced biotic population .

CONCLUSIONS

e The concentrations of many different substances in some samples collected during this survey exceeded
applicable toxicity thresholds or guideline values. Noteworthy among these chemicals were copper, lead, zinc,
many high molecular weight PAHSs, total PAHSs, total DDT, several isomers of DDT, and dieldrin. Trace metals
concentrations in many samples exceeded background levels.

» Chemical concentrations, on average, were most elevated in Pensacola, Choctawhatchee, and St. Andrew
bays and lowest in Apalachicola Bay. Within these bays, contamination was highest in Bayou Chico, followed by
several other bayous, all of which exceeded the main basins of all bays in contaminant levels. Samples from
Bayou Chico equalled or exceeded guideline concentrations for the greatest number of substances and all
samples there exceeded background concentrations of trace metals.
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« All five laboratory tests indicated the presence of toxicity in western Florida samples. Amphipod survival was
the least sensitive test, indicating highly significant toxicity in only one of the 123 samples (0.8% of the total).
Microtox™ tests, in contrast, indicated that 91.9% of the samples were highly toxic. In the sea urchin tests of
100% porewater, 26.0% and 35.0% of the samples were highly toxic in assays of fertilization success and
normal embryological development.

» Some of the tests, notably the two urchin tests, the Microtox™ and Mutatox™ tests, and the Microtox™ and
amphipod survival tests, showed relatively strong concordance with each other, whereas the others showed no
or weak concordance. The differences in toxicity among the tests were attributable to differences in the sediment
phases tested and the differential sensitivities of the test organisms.

 The entire four bay survey area encompassed approximately 850 km2 of the western Florida panhandle. The
spatial extent of toxicity throughout this area was estimated for each test except Mutatox™. Approximately 90%
of the area represented in the survey was toxic in the Microtox™ test, 34% was toxic in the urchin development
test, 23% was toxic in the urchin fertilization test, and 0.005% was toxic in the amphipod survival test.

« In 30 independent trials (6 samples, 5 toxicity tests), 23 (76.7%) of the tests showed highly significant results in
Bayou Chico. This area was clearly the most toxic region of the study area. The overall incidences of highly
significant toxicity in the other areas were: 45.4% (84 of 185 trials) in Choctawhatchee Bay, 37.8 % (17 of 45
trials) in Apalachicola Bay, 33.1% (41 of 120 trials) in St. Andrew Bay, and 28.1% (45 of 160 trials) in Pensacola
Bay.

 Overall, the incidence and severity of toxicity were higher in Bayou Chico, an industrialized basin adjoining
Pensacola Bay, than in all other bays. All of 1994 samples from Bayou Chico were highly toxic in the urchin
embryo and Mutatox™ tests. All except one sample was highly toxic in the Microtox™ tests. The only sample in
the entire survey showing a highly significant result in the amphipod tests was collected in Bayou Chico.

» Other bayous in which toxicity was apparent included Watson’s Bayou and Massamino Bayou adjoining St.
Andrew Bay; Garnier Bayou and Tom’s Bayou adjoining Choctawhatchee Bay; and Bayou Grande and Bayou
Texar adjoining Pensacola Bay. Toxicity also was apparent in the Pensacola Harbor and harbor entrance.

» The mixtures of chemical substances associated with toxicity differed among tests and among the four bays.
Overall, however, the concentrations of DDT, ammonia, several trace metals (notably copper), and PAHs were
most frequently associated with toxicity throughout the entire survey area.

* Overall, within the combined study area the Microtox™ test results were most correlated with the concentra-
tions of DDT and other pesticides, and to a lesser degree, with the concentrations of several trace metals and
PAHSs. Notably, this test showed a strong association with the sums of 25 toxicants normalized to their respective
guideline values. In Pensacola Bay test results were highly correlated with cadmium, copper, lead, and zinc.
None of the substances measured was correlated with Microtox™ results in Choctawhatchee Bay. However, in
St. Andrew Bay numerous trace metals, individual PAHSs, classes of PAHSs, chlordane, other pesticides and DDT
were correlated with test results.

 Sea urchin fertilization showed a strong association with porewater ammonia, numerous trace metals and the
sum of all PAHs quantified. In Pensacola Bay fertilization success was correlated with a mixture of trace metals,
PAHs and a few pesticides. The concentrations of these substances were particularly elevated in the highly toxic
samples collected in Bayou Chico. Similarly, numerous trace metals, many PAHs, PCB congeners, total PCBs,
DDT and other pesticides were correlated with urchin fertilization success in Choctawhatchee Bay. In St. An-
drew Bay, fewer substances were correlated with urchin fertilization, notably including unionized ammonia,
several trace metals, total DDT and two DDT isomers.

« In the combined study area, sea urchin development was highly correlated with ammonia and, to a consider-
ably lesser degree, three trace metals, PAHs, and dieldrin. In Pensacola Bay, embryo development was highly
correlated with unionized ammonia, and to a lesser degree, many trace metals, PAHs, and total DDT. Zinc, PAH,
DDT, and dieldrin concentrations in toxic samples exceeded applicable guideline concentrations in some Pensacola
Bay samples. Although most of the samples from Bayou Chico exceeded guideline values for many substances,
none of the correlations with urchin embryo development were significant. In both Choctawhatchee and St.
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Andrew bays, urchin development was correlated strongly with unionized ammonia concentrations, which ex-
ceeded toxicity threshold values in numerous samples.

 The ecological relevance of the toxicity tests differs among the different bioassays. Severe toxicity in amphipod
tests has been associated with altered benthic populations in several field studies. Therefore, this test may be
an indicator of relatively degraded conditions in the environment. Results of the toxicity survey performed in the
four western Florida bays suggest that resident benthic communities may be impacted in some of the regions,
especially in the urbanized bayous in which chemical concentrations were highest and toxicity was most severe.
The sea urchin test indicates reduced reproductive success of a sensitive marine invertebrate in exposures to
the porewaters, a component of sediments in which toxicants are readily bioavailable. In the Microtox™ tests,
toxicants are drawn out of the sediment matrix with an organic solvent, and, therefore, are indicative of the
potential for toxicity in the samples. The Mutatox™ tests provide information on the mutagenic potential of
sediment-associated toxicants.

In summary, the incidence of toxicity, whether acute or otherwise indicative of chronic problems, should be used
to draw attention to these systems whose capability to sustain a healthy, well balanced benthic population is
compromised. Changes in upland land management practices and better source controls are needed to prevent
long term harm.
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Figure 1. Study area encompassing Pensacola, Choctawhatchee, St. Andrew, and Apalachicola bays.
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Figure 2. Total PAH concentrations in sediments from 10 NOAA NS &T Program sampling sites.
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Figure 3. Total DDT concentrations in sediments from 10 NOAA NS&T Program sites.

CBPP

Pensacola casr Choctawhatchee

PBIB Bay l Bay

250

PCMP

bCLO I J SAWB

St. Andrew
Bay

200
150
100

50
Apalachicpla
Bay APCP

0

L
ead, ug/g o

< J H '
<. APA

Figure 4. Lead concentrations in sediments from 10 NOAA NS&T Program sites.
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Figure 5. Concentrations of organics and trace metals in sediments from NS&T Pro-
gram sites sampled in Pensacola Bay in 1991.
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Figure 6. Concentrations of organics and trace metals in sediments from NS&T Pro-
gram sites sampled in Choctawhatchee Bay in 1991.
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Figure 7. Concentrations of organics and trace metals in sediments from NS&T Pro-
gram sites sampled in St. Andrew Bay in 1991.
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bays.
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20. Maximum, mean and minimum concentrations of total PCBs, total pesticides and
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21. Maximum, mean and minimum lead concentrations in western Florida bays.
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22. Maximum, mean and minimum mercury concentrations in western Florida bays.
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30. Distribution of lead concentrations among selected sampling stations in Bayou
Chico.
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31. Distribution of total PAH concentrations among selected sampling stations in
Choctawhatchee Bay.
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32. Distribution of total PCB concentrations among selected sampling stations in
Choctawhatchee Bay.

C2-
Garni B3-1
arnier
Bayou Akl
A2-1

Gulf of Mexico

3 -
% F1-1 G1-1
2 F2-1
% Rocky
= Bayou
=3 Ly
C1-2
3-1
L1-2 Choctawhatchee
Bay
Destin Harbor
D1-1 D2-2

Mercury (Hg), ppm
0.35
0.30 |
0.25
0.20

0.

0.10

0.05

0.00

LaGrange
Bayou
K2-1

33. Distribution of mercury concentrations among selected sampling stations in
Choctawhatchee Bay.
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34. Distribution of lead concentrations among selected sampling stations in
Choctawhatchee Bay.
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35. Distribution of total PAH concentrations among selected sampling stations in St.
Andrew Bay.
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36. Distribution of total PCB concentrations among selected sampling stations in St.
Andrew Bay.
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37. Distribution of mercury concentrations among selected sampling stations in St.
Andrew Bay.
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38. Distribution of lead concentrations among selected sampling stations in St. An-
drew Bay.
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39. Distribution of total PAH concentrations among selected sampling stations in
Apalachicola Bay.
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40. Distribution of total PCB concentrations among selected sampling stations in
Apalachicola Bay.

Lake Wimico

Apalachicola River

ARlachicola

0.035
0.030
0.025F
0.020 |-
0.015f
0.010f
0.005 |-
0.000 %+
Mercury, ppm

Apalachicola Bay
C2-1

Gulf of Mexico

41. Distribution of mercury concentrations among selected sampling stations in
Apalachicola Bay.
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42. Distribution of lead concentrations among selected sampling stations in Apalachicola
Bay.
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Figure 43a. Relationship between arsenic and aluminum in 1993 Pensacola Bay
samples.

65



Pensacola Bay, Cadmium/Aluminum
10 &
H
o
1 H
g PRRRIL
o [ ‘.
£ 0.1 { J i
3 ° ®
s L
©
S o»
0.01
0.001
10 100 1000 10000 100000 1000000
Aluminum, ppm

Figure 43b. Relationship between cadmium and aluminum in 1993 Pensacola Bay
samples.
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Figure 43c. Relationship between chromium and aluminum in 1993 Pensacola Bay
samples.
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Figure 43d. Relationship between copper and aluminum in 1993 Pensacola Bay samples.
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Figure 43e. Relationship between lead and aluminum in 1993 Pensacola Bay samples.
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Figure 43f. Relationship between zinc and aluminum in 1993 Pensacola Bay

samples.
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Figure 44a. Relationship between arsenic and aluminum in 1994 Bayou Chico

samples.
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Figure 44b. Relationship between cadmium and aluminum in 1994 Bayou Chico

samples.
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Figure 44c. Relationship between chromium and aluminum in 1994 Bayou Chico

samples.
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Figure 44d. Relationship between copper and aluminum in 1994 Bayou Chico samples.
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Figure 44e. Relationship between lead and aluminum in 1994 Bayou Chico samples.
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Figure 44f. Relationship between nickel and aluminum in 1994 Bayou Chico samples.
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Figure 44g. Relationship between zinc and aluminum in 1994 Bayou Chico samples.
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Figure 45a. Relationship between arsenic and aluminum in Choctawhatchee Bay
samples.
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Figure 45b. Relationship between cadmium and aluminum in Choctawhatchee Bay
samples.
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Figure 45c. Relationship between chromium and aluminum in Choctawhatchee Bay

samples.
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Figure 45d. Relationship between copper and aluminum in Choctawhatchee Bay

samples.
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Figure 45e. Relationship between lead and aluminum in Choctawhatchee Bay samples.

1000

100

10

ppm

zZinc,

0.1

0.01

Choctawhatchee Zinc/Aluminum

2
o [ J
10 100 1000 10000 100000

Aluminum, ppm

1000000

Figure 45f. Relationship between zinc and aluminum in Choctawhatchee Bay samples.
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Figure 46a. Relationship between arsenic and aluminum in St. Andrew Bay samples.
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Figure 46b. Relationship between cadmium and aluminum in St. Andrew Bay samples.
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Figure 46¢. Relationship between chromium and aluminum in St. Andrew Bay samples.
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Figure 46d. Relationship between copper and aluminum in St. Andrew Bay samples.
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Figure 46e. Relationship between lead and aluminum in St. Andrew Bay samples.
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Figure 46f. Relationship between zinc and aluminum in St. Andrew Bay samples.
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Figure 47a. Relationship between arsenic and aluminum in Apalachicola Bay samples.
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Figure 47b. Relationship between cadmium and aluminum in Apalachicola Bay samples.
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Figure 47c. Relationship between chromium and aluminum in Apalachicola Bay
samples.
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Figure 47d. Relationship between copper and aluminum in Apalachicola Bay samples.
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Figure 47e. Relationship between lead and aluminum in Apalachicola Bay samples.

Apalachicola Bay, Zinc/Aluminum

1000

100

10

ppm

Zinc,

0.1

0.01
10 100 1000 10000 100000 1000000

Aluminum, ppm

Figure 47f. Relationship between zinc and aluminum in Apalachicola Bay samples.
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48. Sampling stations in Pensacola Bay in which sediments were either not toxic to
amphipod survival, significantly different from controls, or highly toxic.

Amphipod survival

OO Not toxic

o o Significantly different
from control

® B Significantly different
from control and <80% of

O Stations sampled in 1993 |

O stations sampled in 1994

° o
BC 1-2 Aé] 5 control response
= O BC é}
BC 4-2
BC 2-2 Og o O e
: o7 N -
Bayou Chico 08 o 53
BC 6-2
2oy
Peﬂ‘saco\a

Figure 49. Sampling stations in Bayou Chico in which sediments were either not toxic
to amphipod survival, significantly different from controls, or highly toxic.
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Figure 50. Sampling stations in Choctawhatchee Bay in which sediments were either
not toxic to amphipod survival, significantly different from controls, or highly toxic.
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Figure 51. Sampling stations in St. Andrew Bay in which sediments were either not
toxic to amphipod survival, significantly different from controls, or highly toxic.
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Figure 52. Sampling stations in Apalachicola Bay in which sediments were either not
toxic to amphipod survival, significantly different from controls, or highly toxic.
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Figure 53. Sampling stations in Pensacola Bay in which sediments were either not
toxic in Microtox™ tests, significantly different from controls, or highly toxic.
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Figure 54. Sampling stations in Bayou Chico in which sediments were either not toxic
to Microtox™ tests, significantly different from controls, or highly toxic.
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Figure 55. Sampling stations in Choctawhatchee Bay in which sediments were either
not toxic to Microtox™ tests, significantly different from controls, or highly toxic.
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Figure 56. Sampling stations in St. Andrew Bay in which sediments were either not
toxic to Microtox™ tests, significantly different from controls, or highly toxic.
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Figure 57. Sampling stations in Apalachicola Bay in which sediments were either not
toxic to Microtox™ tests, significantly different from controls, or highly toxic.
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Figure 58. Sampling stations in Choctawhatchee Bay in which sediments were either
not toxic, suspected genotoxic, or genotoxic in Mutatox™ tests.
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Figure 59. Sampling stations in Apalachicola Bay in which sediments were either not
toxic, suspected genotoxic, or genotoxic in Mutatox™ tests.
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Figure 60. Sampling stations in Pensacola Bay in which sediments were either not
toxic or significantly different from controls in sea urchin fertilization tests of sediment
porewaters.
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Figure 61. Sampling stations in Bayou Chico that were either not toxic or significantly
different from controls in sea urchin fertilization tests of sediment porewaters.
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Figure 62. Sampling stations in Choctawhatchee Bay that were either not toxic or sig-
nificantly different from controls in sea urchin fertilization tests of sediment porewaters.
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Figure 63. Sampling stations in St. Andrew Bay that were either not toxic or signifi-
cantly different from controls in sea urchin fertilization tests of sediment porewaters.
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Figure 64. Sampling stations in Apalachicola Bay that were either not toxic or signifi-
cantly different from controls in sea urchin fertilization tests of sediment porewaters.
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Figure 65. Sampling stations in Pensacola Bay that were either not toxic or signifi-
cantly different from controls in sea urchin developmente tests of sediment porewaters.
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Figure 66. Sampling stations in Bayou Chico that were either not toxic or significantly
different from controls in sea urchin development tests of sediment porewaters.
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Figure 67. Sampling stations in Choctawhatchee that were either not toxic or signifi-

cantly different from controls in sea urchin embryo development tests of sediment
porewaters.
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Figure 68. Sampling stations in St. Andrew Bay that were either not toxic or signifi-
cantly different from controls in sea urchin development tests of sediment porewaters.
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Figure 69. Sampling stations in Apalachicola Bay that were either not toxic or signifi-
cantly different from controls in sea urchin development tests of sediment porewaters.



92

Urchin normal development (%)

120

100

80

60

40

20

Urchin normal development (%)

-20

rciipavvia pay

120 —
100 - 00 Rho = -0.331, L
i o0 p<0.05 A
o 9~ o
8o P o -
i o o L
o
60 B
i PEL = I
40 271 ppm
20 = TEL = =
i 124 ppm I
0 & oo 00 @—o
-20 eyt r——r—r—r—p—r—r—
0 200 400 600 800 1000
Zinc, ppm
Figure 70. Relationship between normal urchin
embryo development and the concentrations of zinc
in Pensacola Bay.
Felsatvia bay
g g 3 2 0 3 3 3 3 0 3 2 2 2 1 3 32 3 2 0 32 3 3 2 | 3 32 3 4
. Rho = -0. 586, p<0.05 I
-) O -
- O 3
BiC © o
1l o L
P L
} PEL= i
1 6676 ppb [
JTEL= B
1 1655 ppb L
= o000 o o
T T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000

Sum of HMW PAHSs, ppb

Figure 71. Relationship between urchin normal
development and concentrations of high molecular
weight PAHs in Pensacola Bay.



Felsdiulid bdy

14 PR | a1 PR | a1 a1 a1 a1 PR | a1
' Rho = -0.606,
1249 p<0.05 L
10 19 -
2 {6 g
- !
L
< D
I TEL = i
8 3.89 ppb
2 _ pp
+4 P PEL = s
19 51.7 ppb
o
2 - =
a °f § o ©
0 e B M a e L o o e o e S
0 10 20 30 40 50 60 70 80 90 100
Total DDT, ppb
Figure 72. Relationship between Microtox™ EC50's
and the contrations of total DDT in Pensacola Bay.
rciioavvia uay
14 g 3 3 3 0 3 3 3 2 0 3 2 32 2 0 3 3 3 2 0 2 3 2 2 ] 3 2 3 3
12 1 0 Rho =-0.492, =
p< 0.05
101 & -
{ o
2 o
n g = -
S o
P D
61 o B
Q o
=
4 '@ © B
o
o
2499 -
. (o)
P30
09 o 8 o ° . °
0 T TP T T T T T rTTTTrTr-T-7
0 5 10 15 20 25 30

Sum of ERM Quotients

Figure 73. Relationship between Microtox™ EC50's
and the sum of 18 chemical concentration/ERM
guotients for Pensacola Bay.

93



94

rciioavvia pay

1 1 1 1 1 1 1 1
110 4 Rho = -0.670, -
. <0.0001 I
o P
90 - & O -
;\é\ L O O .
£ 704° © o -
£ . I
o
Ie)
% 50 - B
% . LOEC = 90 ug/L i
£ - L
5 30
c
= ' [
e
% 10 - =
= o—fo—o0&-o o—F
-10 -l | ] | ] | ] | ] | ] | ] | ] | ] -

0 25 50 75 100 125 150 175 200 225

Un-ionized ammonia, ug/L

Figure 74. Relationship between urchin percent
normal development and the concentrations of
un-ionized ammonia in porewater from Pensacola Bay.

payv u i nev/Apaiaviinvuia pay

100 PR PR | PR PR | PR PR | PR PR | PR PR | PR .
. o N
90 % [
80 7 Rho = -0.458, [
70 p>0.05 R
< . I
g 607 g
N
T 50 - B
E L 3
£ 0P :
o
2307  PeL= ERM = [
g 20 - 271 ppm 410 ppm -
& ’ i
10 L -
0 o o o o o
-10 L L A A A S B
0 200 400 600 800 1000 1200

Zinc, ppm

Figure 75. Relationship between sea urchin
fertilization and the concentrations of zinc in
samples from Bayou Chico and Apalachicola Bay.



45'.|.'|.|.i.|.

404 ©
35
30 o

25 1

20

15

Microtox EC50s

10 <

Rho =-0.667,
p > 0.05

o SQC =
300 ug/goc

0 50 100 150 200 250 300
Fluoranthene, ug/goc

Figure 76. The relationship between Microtox™

350 400

EC50's and the concentrations of fluoranthene (ug/goc)
in samples from Bayou Chico and Apalachicola Bay.

payuv U nev/Apaiaviiivvia pay

450

100 % 1 1 1 1 1 1
90
80
70
60
50
40
30
20

Percent urchin fertilization

10

0
8

Rho =-0.472,
p > 0.05

PEL =
16770 ppb

0

O
J

(0]

-10 T T T T T T

0 5000 10000 15000
Total PAHSs, ppb

Figure 77. Relationship between sea urchin
fertilization and concentrations of total PAHs
in Bayou Chico and Apalachicola Bay.

20000

95



uyo U crnvurmpuao oo oy

80 2 2 2 0 2 2 3 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 32 0 2 32 2 0 . . 3

40 L

70 7o Rho = -0.657,

l p >0.05 [

= 60 - -
c
£ ] [
550 7 -
o L
3 - L
2 40
£ b "
S 30 L
: o
3
€ 20 - B
o e 3
c
£ 10 1 B
(O]
o 1 -
g o o0 o @—o
-10 T T T T T T T T T T T T T T TTTT

0 2 4 6 8 10 12 14 16

Sum of 25 chemical/ERM Quotients

Figure 78. Relationship between urchin embryo
development and the sum of 25 chemical
concentration/ERM quotients in Bayou Chico and
Apalachicola Bay.

uyo U crnvurmpuasiiouia oy

80 g a2 o 0 2 2 2 2 0 2 3 2 2 0 2 2 2 2 0 2 2 2 2 0 2 2 2 32 0 2 3 32 3
704 © o Rho = -0.464, B
i p > 0.05 [
% 60- -
E - o
o
S 50 9 B
()
Q . L
3 - L
= 40
= . L
[&]
5 30 9 n
g L 3
5 20 7 B
c - 3
g 10 7 LOEC = -
O QOO \ > \ O
10 T T T T T T T T T T T T T T TTTTT~T~TT~T
0 50 100 150 200 250 300 350

Un-ionized ammonia, ug/L

Figure 79. Relationship between urchin embryo
development and concentrations of un-ionized
ammonia in porewater in Bayou Chico and
Apalachicola Bay.



wiivuiiavviiawvliicoc pay

100 o e o b 2 2 0 5 3 2 0 5 2 2 0 5 5 a2 0 5 3 2 1 5 5 2 ] 5 5 3
90 Rho = -0.656,
80 p<0.05 N
70 B
Seo| © -
© [0) 3
s sodpP ,©° -
5 © -
% 40 1|0 [
3 30 0©° -
C o
3]
T 20 B
o 3
10 TEL = 3.9 ppb B
I e o B T e T o T B T B
0 20 40 60 80 100 120 140 160
Total DDT, ppb
Figure 80. Relationship between sea urchin
fertilization and the concentrations of total
DDTs in Choctawhatchee Bay.
M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M M
°To [
80 7 © Rho = -0.477, [
] 000 © Og p<0.05 K
70
’_c; L d
E 60 - B
o] L 3
c
¥ 50 7 o .
= ] [
4 L -
2 407 0 .
g LOEC =
= 30 9 o) B
§ r o) ° o) 90 Ug/l S
S 20 B
=3 . ol
€ 10 1 B
GC') L OO o
£ 0 © © D
8 - 3
2 10 o P A R S T A E A E S E . T E— .
0O 10 20 30 40 50 60 70 80 90 100

Un-ionized ammonia, ug/|

Figure 81. Relationship between urchin embryo
development and concentrations of un-ionized
ammonia in porewater in Choctawhatchee Bay.

97



108 gz 2 0 5 2 o 0 2 2 2 0 3 32 32 0 32 3 2 0 2 3 32 0 3 32 32 0 3 3 3
106 = O Rh0:'0374, =
— 1 p <0.05 -
£ 104 - N
S i OoFr
o 102 P L
° 10 O O i
S 100 T O O -
3] 5 ) lo) 3
g 9894 o0 R
% o O 3
= 96 =0 O (@] ™
= ’ o @ I
S 941 o L
Z i PEL = B
B 921 o B
.8— ] ERM = 51.7 ng/g [
S 90+ 0461nglg @ L
g r (@) 3
88 T T =TT T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160
Total DDT, ng/g
Figure 82. Relationship between amphipod survival and the
concentrations of total DDT in St. Andrew Bay sediments.
o mnurew Ly
1 1 1 1 1 1 1 1 1
110 H Rho =-0.621, B
< 0.001 .
oS © P
€ 90 o -
o O
S | L
Q.
9o o
<1>-> 70 1 B
(]
) 4 L
=
> 9 - 3
g3 o LOEC = 90 ug/L
0 g 30 H B
= X
[ ) o L
8 S
g® 107 o ]
O © © ©
'10 ] ] ] ] ] ] ] ] ]

0 25 50 75 100 125 150 175 200 225 250
Un-ionized ammonia, ug/L

Figure 83. Relationship between sea urchin normal development
and the concentrations of un-ionized ammonia in the porewater of
St. Andrew Bay sediments.



110

100

90

80

70

60

50

40

30

Percent sea urchin fertilization

@100% porewater

20

10

QL. AlIUITYW Day

Zn,ug/g

Figure 84. Relationship between percent sea urchin fertilization
and the concentrations of zinc in St. Andrew Bay sediments.

110
100
90
c 80
i)
§ o0
S 60
C S
£ 3
S ® 50
5 3
© S 40
2 8
X 30
8_-’@ 20
10

2 [} 2 [} 2 [} 2 [} 2 [} 2 [} 2 [} 2 [} 2 [} 2
¥ wo 0 o @ o ol
N Rho|= -0.495, B
] o p<0lo5 i
] ERM = [
] PEL = 410 ugly |
] o 271 uglg B
- O =
- O d

o e | . m— y——r
0 50 100 150 200 250 300 350 400 450 500

| M M M '] M M M '] M M M '] M M M M M M
;} o O Rho =-0.499, -
10 p<0.05 -
10 -
] o i
i1 o L
- LOEC = -
h 800 ug/L [
- O o
L o o
P —————————— r—r—
0 200 400 600 800 1000

Unionized ammonia, ug/L

Figure 85. Relationship between sea urchin fertilization and
the concentrations of un-ionized ammonia in porewater of
sediments from St. Andrew Bay.

99



OL. AlIUVITYW  pay
70 i i i 1 i i el i i i 1 i i el i i i

Rho =-0.722,
60 p<0.0001

50 1

40 H

30 H

20 T

10

Microtox EC50 as percent of reference

210 Pr—r—————————— T

Trans-nonachlor, ng/g

Figure 86. Relationship between microbial bioluminescence
(Microtox EC50's) and the concentrations of
trans-nonachlor in St. Andrew Bay sediments.

70 '

60 10 Rho =-0.621, -
3 p<0.05
c
S 50- -
Q
o
S 40 T =
1<
3 . I
o D
g i
8 201 -
%)
3 i A
(u_j 10 -OO o N

Py © o}

X (o]
5, s ° @ o o o
S
= -10 T T T T T T T T

0 2.5 5 75 10 12,5 15 17,5 20 225
Sum of 25 ERM Quotients

Figure 87. Relationship between the sum of 25 chemical
concentration-to-ERM quotients and microbial bioluminescence
(Microtox EC50's) in St. Andrew Bay sediments.

100



VUVLOWITT 1 VUG vUy O

45 PRI 2 2 2 ] 2 2 3 1 3 s 0 2 2 2 0 s ol el
] o Rho =-0.486, I
40. p<0.001 L
35 T B
30 1 B
P s L
n 25 1 B
O o L
w
X 20 - -
)
§ L O 3
S - -
= 15. o) (@] I
10 " 8° PEL = -
1 (0] 51.7 ppb [
51 o) B
] nn()o o-0O. Or\ [
0- SSOD OO \ S
O o i T e T e i T B

-20 0 20 40 60 80 100 120 140 160
Total DDT, ppb

Figure 88. Relationship between Microtox™
EC50's and the concentrations of total DDTs
in western Florida samples.

120 ;' : .“I' ' M 1 M 1 M 1 M 1 M 1 M 1 M 1 M
Rho = -0.601, "
100 o000 O o) p<0.0001 5
Q) o A
80 A1 o Q B
< . i
= i Oo o
200 & o
E o
< 40 P OO B
5 . o o3} L
5 o
£ 20 o L
3] . o i
[0
“ o o 00—o ©
'20 bl 1 . 1 L | b | L 1 L 1 L] ] L ] T
0 10000 20000 30000 40000

Sum of all PAHSs, ppb

Figure 89. The relationship between urchin
fertilization and the concentrations of all PAHs
in western Florida samples.

101



120 » 1 » 1 » 1 » 1 » 1 » 1 »
Rho = -0.692, i
100 "PERO®@ p<0.0001
_ L o i
S 80 o B
S & O I
c O
S 60 - B
g 1° [
g 407 ° o -
(0] L 5
° 2011 © 90 ug/L B
= o O L
S ® ©
° 0 o0 0D |G o—00—0—0—0
'20 L 1 L] 1 L) ] L] T T T T T T
0 50 100 150 200 250 300 350

Un-ionized ammonia, ug/|

Figure 90. Relationship between urchin embryo
normal development and the concentrations of un-ionized
ammonia in porewater in western Florida samples.

102



Table 1. Coordinates of sampling stations in each bay.

Apalachicola Bay, 1994

Location

Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay

Location

Garnier Bayou
Garnier Bayou

Dons Bayou

Hand Cove, Garnier Bayou
Garnier Bayou
Garnier Bayou
Choctawhatchee Bay
Cinco Bayou

Cinco Bayou

Cinco Bayou
Choctawhatchee Bay
Choctawhatchee Bay
Joes Bayou

Joes Bayou

Destin Harbor

Destin Harbor

Destin Harbor

Boggy Bayou

Boggy Bayou

Boggy Bayou

Tom’s Bayou

Tom’s Bayou

Boggy Bayou

Rocky Bayou

Rocky Bayou

Rocky Bayou
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Alaqua Bayou
Alaqua Bayou

La Grange Bayou

La Grange Bayou

Stratum Station
(A)B 1-1
(A)B 3-1
(A)B 2-1
(A)C 3-1
(A)C 2-1
(A)C 1-1
(A)A 1-1
(A)A 2-1
(A)A 3-1

Choctawhatchee Bay, 1994

Stratum Station
(C)B 1-1
(C)B 2-3
(C)B 3-1
(©C 1-2
(©cC 2-1
(©cC 3-1
(CL 1-2
(©OA 1-1
(COA 2-1
(OA 3-1
(C)L 3-1
(C)L 2-1
(CH 1-1
(CH 2-1
(C)D 3-1
(C)D 2-2
(C)D 1-1
(CE 1-1
(CE 2-1
(COE 3-1
(C)F 1-1
(C)F 2-1
(C)G 1-1
(C)G 2-1
(C)G 3-1
(C)G 4-1
(CM 3-1
(CM 2-1
(CM 1-1
(C)N 1-1
(C)N 2-1
(C)N 3-1
(©)J 1-1
(©)J 2-1
(COK 1-1
(COK 2-1
(COK 3-1

La Grange Bayou

Latitude

30°28.43 ‘N
29°42.65 ‘N
29°39.65 ‘N
29°36.81 ‘N
29°39.28 ‘N
29°42.96 ‘N
29°45.29 ‘N
29°44.47 ‘N
29°43.63 ‘N

Latitude

30°28.43 ‘N
30°27.80 ‘N
30°27.05 ‘N
30°26.95 ‘N
30°26.65 ‘N
30°25.88 ‘N
30°25.22 ‘N
30°25.74 ‘N
30°25.71 ‘N
30°25.54 ‘N
30°28.51 ‘N
30°26.72 ‘N
30°24.55 ‘N
30°24.92 ‘N
30°23.37 ‘N
30°23.37 ‘N
30°23.44 ‘N
30°30.95 ‘N
30°29.83 ‘N
30°29.72 ‘N
30°30.18 ‘N
30°30.16 ‘N
30°30.23 ‘N
30°30.27 ‘N
30°30.34 ‘N
30°29.94 ‘N
30°27.21 ‘N
30°27.77 ‘N
30°28.16 ‘N
30°26.37 ‘N
30°24.61 ‘N
30°23.59 ‘N
30°29.12 ‘N
30°29.02 ‘N
30°28.23 ‘N
30°28.09 ‘N
30°27.50 ‘N

Longitude

86°35.47 ‘W
84°53.98 ‘W
84°56.53 ‘W
84°59.66 ‘W
85°03.21 ‘W
84°59.23 ‘W
85°00.69 ‘W
84°59.89 ‘W
84°58.46 ‘W

Longitude

86°35.46 ‘W
86°35.75 ‘W
86°36.18 ‘W
86°35.37 ‘W
86°35.58 ‘W
86°35.45 ‘W
86°32.64 ‘W
86°38.06 ‘W
86°37.12 ‘W
86°36.51 ‘W
86°28.15 ‘W
86°30.77 ‘W
86°29.30 ‘W
86°29.48 ‘W
86°29.57 ‘W
86°29.94 ‘W
86°30.20 ‘W
86°29.49 ‘W
86°29.13 ‘W
86°28.93 ‘W
86°30.02 ‘W
86°29.58 ‘W
86°25.15 ‘W
86°26.24 ‘W
86°27.10 ‘W
86°27.17 ‘W
86°24.53 ‘W
86°19.08 ‘W
86°16.87 ‘W
86°14.09 ‘W
86°10.55 ‘W
86°10.02 ‘W
86°12.62 ‘W
86°12.34 ‘W
86°08.23 ‘W
86°08.65 ‘W
86°09.31 ‘W
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Table 1 Continued.

Pensacola Bay, 1993

Stratum

— TV U000 ZZEIrmrmrAXCITITOOOMTMTTMMOOTOO0O0O00TTITHWEIE®E>>D>

Station

©CoOo~NOOULS, WNPE
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Pensacola Bay, 1994

Stratum

104

(BC)
(BC)
(BC)
(BC)
(BC)
(BC)

Station

1-2
2-2
3-2
4-2
5-3
6-2

Location

Bayou Grande
Bayou Grande
Bayou Grande
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Texar
Bayou Texar
Bayou Texar
Bayou Texar
Warrington
Bayou Chico
Bayou Channel

Inner Harbor Channel

Inner Harbor
Inner Harbor
Inner Harbor
Pensacola Bay
Pensacola Bay
Inner Harbor
Lower Bay
Lower Bay
East Bay
East Bay
East Bay
Blackwater Bay
Blackwater Bay
Blackwater Bay
Escambia Bay
Escambia Bay
Escambia Bay
Escambia Bay
Escambia Bay

Escambia River Mouth

Escambia
Floridatown
Central Bay

Location

Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico

Latitude

30°22.548'
30°22.095'
30°22.258"
30°24.425'
30°24.317
30°24.196'
30°24.041
30°23.966'
30°23.935'
30°27.113'
30°26.646'
30°25.910'
30°25.661"
30°22.836'
30°23.389
30°23.558"
30°24.141"
30°24.175'
30°24.134
30°24.138"
30°23.010'
30°23.463'
30°23.853"
30°22.081"
30°22.521"
30°28.289'
30°26.634"
30°27.744'
30°31.726'
30°32.602'
30°34.817
30°28.886'
30°31.169'
30°31.621"
30°32.137"
30°32.923'
30°33.754'
30°33.337"
30°34.470'
30°24.335'

Latitude

30°24.42 ‘N
30°24.25 ‘N
30°24.15 ‘N
30°24.15 ‘N
30°24.01 ‘N
30°23.96 ‘N

Longitude

87°16.743'
87°17.091'
87°18.771'
87°15.387
87°15.37T7
87°15.245'
87°14.786'
87°14.667
87°14.385'
87°12.078'
87°11.241"
87°11.168'
87°11.362'
87°15.130
87°13.587
87°13.989
87°13.622'
87°13.296'
87°12.895
87°12.855'
87°13.012'
87°12.949'
87°13.010
87°12.650'
87°14.464
87°03.152'
86°59.533'
86°58.686'
87°00.973'
87°00.788'
87°00.661'
87°07.199'
87°07.219
87°08.723'
87°10.797
87°11.299
87°10.479
87°09.150
87°09.960
87°07.090

Longitude

87°15.48 ‘W
87°15.34 ‘W
87°15.20 ‘W
87°14.91 ‘W
87°14.65 ‘W
87°14.48 ‘W



Table 1 continued.

St. Andrew Bay, 1993

Stratum Station Location Latitude Longitude
A 41 West Bay 30°15.492' 85°47.389'
A 42 West Bay 30°15.166' 85°45.219'
B 43 North Bay 30°12.011' 85°44.116'
B 44 North Bay 30°13.752' 85°41.849'
B 45 North Bay 30°14.781" 85°41.072'
B 46 North Bay 30°15.194' 85°40.090
B 47 Lynn Haven 30°14.741" 85°39.662'
C 48 St. Andrew Bay 30°09.929' 85°43.562'
C 49 St. Andrew Bay 30°09.562' 85°42.415'
C 50 St. Andrew Bay 30°08.956' 85°40.785
C 51 St. Andrew Bay 30°10.016' 85°42.345'
C 52 St. Andrew Bay 30°10.533 85°43.315
D 53 Massalina Bayou 30°09.239 85°39.354"
D 54 Massalina Bayou 30°09.140 85°39.384"
E 55 Watson Bayou 30°09.346' 85°38.418"
E 56 Upper Watson 30°09.179 85°38.380
E 57 Upper Watson 30°09.077 85°38.336'
E 58 Mid Watson 30°08.834" 85°38.006'
E 59 Mid Watson 30°08.656' 85°37.960"
E 60 Mid Watson 30°08.862 85°37.707
E 61 Lower Watson 30°08.480" 85°38.469'
E 62 Lower Watson 30°08.454 85°38.146'
E 63 Watson Bayou 30°08.444 85°37.993
F 64 St. Andrew Bay 30°08.443' 85°39.369
F 65 St. Andrew Bay 30°08.039 85°38.948"
F 66 Mouth of Watson Bayou 30°08.058" 85°38.092'
F 67 St. Andrew Bay 30°07.573' 85°36.759'
F 68 Mouth of Pearl Bayou 30°06.214" 85°36.669'
F 69 Smak Bayou 30°07.729' 85°40.003'
G 70 West-East Bay 30°05.284" 85°33.068"
G 71 East-East Bay 30°02.498' 85°30.093'

Table 2. Numbers of stations sampled and tested for toxicity and numbers of stations
tested for chemistry in four western Florida bays.

Bay Year Total number Number of stations
name sampled of stations tested for chemistry

Pensacola Bay 1993 40 20 (organics)
40 (metals)

Bayou Chico 1994 6 6

Choctawhatchee Bay 1994 37 21

St. Andrew Bay 1993 31 31 (organics)
22 (metals)

Apalachicola Bay 1994 9 3
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Table 3. Summary of data from amphipod toxicity tests performed in both years on all samples;
listed as mean percent survival, statistical significance and percent of control for each station.

Pensacola Bay, 1993 Station Mean % survival Statistical % of
number Location + standard deviation Significance Contro |
Control (“home” sediments) San Francisco Bay 68 +10.4
Reference Redfish Bay, Texas 55 £35
Stratum

A 1 Bayou Grande 72+84 ns 106
A 2 Bayou Grande 68 + 15.6 ns 100
A 3 Bayou Grande 72+12.0 ns 106
B 4 Bayou Chico 71+11.4 ns 104
B 5 Bayou Chico 73+14.4 ns 107
B 6 Bayou Chico 67 +5.7 ns 98
B 7 Bayou Chico 68 + 16.0 ns 100
B 8 Bayou Chico 69 + 13.9 ns 101
B 9 Bayou Chico 75+7.9 ns 110
C 10 Bayou Texar 66 £ 16.7 ns 97
C 11 Bayou Texar 76 £10.2 ns 112
C 12 Bayou Texar 74 £16.7 ns 109
C 13 Bayou Texar 66 £12.9 ns 97
D 14 Warrington 71+9.6 ns 104
E 15 Bayou Chico 76 +8.9 ns 112
E 16 Bayou Channel 70+ 11.2 ns 103
F 17 Inner Harbor Channel 75+ 16.6 ns 110
F 18 Inner Harbor 75 +10.0 ns 110
F 19 Inner Harbor 74+£16.4 ns 109
F 20 Inner Harbor 70+12.7 ns 103
G 21 Pensacola Bay 70 £ 20.9 ns 103
G 22 Pensacola Bay 74 +14.3 ns 109
G 23 Inner Harbor 69 £16.7 ns 101
H 24 Lower Bay 68 +£17.9 ns 100
H 25 Lower Bay 63 +£9.7 ns 93
J 26 East Bay 77 £135 ns 113
K 27 East Bay 74 £12.4 ns 109
K 28 East Bay 77+7.6 ns 113
L 29 Blackwater Bay 61+16.4 ns 88
L 30 Blackwater Bay 72+14.8 ns 106
L 31 Blackwater Bay 74+6.5 ns 109
M 32 Escambia Bay 71+10.8 ns 104
N 33 Escambia Bay 67 +11.5 ns 98
N 34 Escambia Bay 63+ 19.6 ns 93
0] 35 Escambia Bay 60+ 154 ns 88
0] 36 Escambia Bay 65+94 ns 96
0] 37 Escambia River Mouth 62 +23.1 ns 91
P 38 Escambia 73+7.6 ns 107
P 39 Floridatown 73+7.6 ns 107
I 40 Central Bay 66 +11.9 ns 97
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Table 3 continued.
Pensacola Bay, 1994

Control
Stratum
(BC)
(BC)
(BC)
(BC)
(BC)
(BC)

Choctawhatchee Bay, 1994

Control
Control
Control
Control
Control
Stratum
(CA
(CA
(CA
(©)B
(©)B
(©)B
()¢
()¢
()¢
(C)D
(C)D
(C)D
(C)E
(C)E
(C)E
(C)F
(C)F
(©)G
(©)G
(©)G
(©)G
(COH
(COH
(C)J
(C)J
(OK
(COK
(OK
(CL

Station

Number

1-2
2-2
3-2
4-2
5-3
6-2

Station

number

1-2

1-2

Location
Central Long Island Sd.

Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico

Station Location

Central Long Island Sd.
Central Long Island Sd.
Central Long Island Sd.
Central Long Island Sd.
Central Long Island Sd.

Cinco Bayou
Cinco Bayou
Cinco Bayou
Garnier Bayou
Garnier Bayou
Dons Bayou
Hand Cove, Garnier Bayou
Garnier Bayou
Garnier Bayou
Destin Harbor
Destin Harbor
Destin Harbor
Boggy Bayou
Boggy Bayou
Boggy Bayou
Tom’s Bayou
Tom’s Bayou
Boggy Bayou
Rocky Bayou
Rocky Bayou
Rocky Bayou
Joes Bayou
Joes Bayou
Alaqua Bayou
Alaqua Bayou
La Grange Bayou
La Grange Bayou
La Grange Bayou
Choctawhatchee Bay

Mean % survival

+ standard deviation

Statistical

% of

Significance Control

92+4.5

9327
97 +45
94+22
86 +9.6
68 £+ 15.7
94 +6.5

Mean % survival

+ standard deviation

ns
ns
ns
ns

*k

ns

Statistical

101
105
102
93
74
102

% of

Significance Control

92+4.5
85+6.1
98+2.7
97+4.5
98+2.7

88+45
95+35
87+7.6
94+4.2
95+5.0
94 +6.5
98+27
87+6.7
93+45
9327
95+3.5
94 +8.9
96+2.2
99+22
95+5.0
93+5.7
94+4.2
96 +4.2
94 +4.2
95+35
98+27
89+6.5
92+7.6
9455
94 +4.2
90+7.1
84 +8.2
92+7.6
87 5.7

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

ns
ns

104
97
102
102
103
102
107
102
109
106
108
107
98
113
108
106
107
109
107
108
111
105
108
97
96
93
87
95
102
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Table 3 continued.

Choctawhatchee Bay, 1994 Station Mean % survival Statistical % of
number Station Location + standard deviation Significance Control
(C)L 2-1 Choctawhatchee Bay 88+7.6 ns 104
(C)L 3-1 Choctawhatchee Bay 97+45 ns 99
(CM 1-1 Choctawhatchee Bay 98 +2.7 ns 100
(CM™M 2-1 Choctawhatchee Bay 92+7.6 ns 105
(CM™M 3-1 Choctawhatchee Bay 93+2.7 ns 106
(ON 1-1 Choctawhatchee Bay 96 +4.2 ns 109
(C)N 2-1 Choctawhatchee Bay 91+10.8 ns 94
(C)N 3-1 Choctawhatchee Bay 98+2.7 ns 101
St. Andrew Bay, 1993 Station Mean % survival Statistical % of
number Station location + standard deviation Significance  Control
Control (“home”) sediments San Francisco Bay 93+8.4
Reference Redfish Bay, Texas 97 £2.7
Stratum
A 41 West Bay 92+5.7 ns 99
A 42 West Bay 94+55 ns 101
B 43 North Bay 84 £8.9 ns 90
B 44 North Bay 91+4.2 ns 98
B 45 North Bay 90 £ 10.0 ns 97
B 46 North Bay 88+ 11.5 ns 95
B 47 Lynn Haven 86+4.2 ns 92
C 48 St. Andrew Bay 95+5.0 ns 102
C 49 St. Andrew Bay 96 £ 6.5 ns 103
C 50 St. Andrew Bay 89+6.5 ns 96
C 51 St. Andrew Bay 85+35 ns 103
C 52 St. Andrew Bay 89+6.5 ns 96
D 53 Massalina Bayou 96+5.5 ns 103
D 54 Massalina Bayou 84+7.4 ns 90
E 55 Watson Bayou 93+5.7 ns 100
E 56 Upper Watson 84 +14.7 ns 90
E 57 Upper Watson 93+27 ns 100
E 58 Mid Watson 94 +6.5 ns 101
E 59 Mid Watson 87 +10.4 ns 94
E 60 Mid Watson 83+29.9 ns 89
E 61 Lower Watson 88 +£5.7 ns 95
E 62 Lower Watson 85+17.3 ns 103
E 63 Watson Bayou 94+6.5 ns 101
F 64 St. Andrew Bay 96 +4.2 ns 103
F 65 St. Andrew Bay 89+8.9 ns 96
F 66 Mouth of Watson Bayou 89+8.9 ns 96
F 67 St. Andrew Bay 94 +£6.5 ns 101
F 68 Mouth of Pearl Bayou 92+45 ns 99
F 69 Smak Bayou 88+7.6 ns 95
G 70 West-East Bay 99+22 ns 106
G 71 East-East Bay 92+5.7 ns 99
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Table 3 continued.

Apalachicola Bay, 1994

Control

Stratum
(R)A
(A)A
(A)A
(A)B
(A)B
(A)B
(A)C
(A)C
(A)C

Station

number

1-1
2-1
3-1
1-1
2-1
3-1
1-1
2-1

Station location

Central Long Island Sd.
Central Long Island Sd.

Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay

Mean % survival
+ standard deviation

Statistical % of

Significance Control

97+4.5
98+2.7

93+5.7
86 £ 14.7
87+6.7
93+45
96 +5.5
96 +4.2
95+5.0
96 +4.2
94+4.2

ns 96
ns 89

* 90
ns 96
ns 99
ns 99
ns 97
ns 99
ns 97

ns = not significant (p>0.05)
* = significantly different from controls (p<0.05)
** = survival <80% of controls

Table 4. Results from Microtox ( T™) tests for both years and from all stations in the four
western Florida Bays; expressed as mean EC 50s (mg equivalents, wet wt.) and stan-
dard deviations, statistical significance, and percent of controls.

Microtox

Apalachicola Bay, 1994

Block Station
(A)A 1-1
(A)A 2-1
(A)A 3-1
(A)B 1-1
(A)B 2-1
(A)B 3-1
(A)C 1-1
(A)C 2-1
(A)C 3-1

Station Location

Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay

Choctawhatchee Bay, 1994

Block

(©A
(©A
(©A
(C)B
(©)B
(C)B
(©¢

Station

1-1
2-1
3-1
1-1
2-3
3-1
1-2

Station Location

Cinco Bayou

Cinco Bayou

Cinco Bayou
Garnier Bayou
Garnier Bayou
Dons Bayou

Hand Cove, Garnier Bayou

58.5+ 10.2

3.1+ 0.8
56+ 11
28+ 04

22.7+ 3.7

7.8+ 1.0
2.2+ 0.5
9.9+ 1.3
1.2+ 0.1

ns

*k

*%

*k

*k

*%

*k

*k

*%

*k

*%

*k

*k

*%

*k

*k

significance

Meanz SD significance

significance
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Table 4 continued.
Choctawhatchee Bay, 1994

Block

Pensacola Bay, 1993
Station

110

(©¢
(©¢
(C)D
(C)D
(C)D
(CE
(CE
(CE
(CF
(CF
(C)G
(C)G
(©)6G
(©)G
(CH
(OH
(C)J
(C)J
(OK
(OK
(OK
(CL
(CL
(©L
(CM
(CM
(CM
(CON
(CON
(CN

Station

2-1
3-1
1-1
2-2
3-1
1-1
2-1
3-1
1-1
2-1
1-1
2-1
3-1
4-1
1-1
2-1
1-1
2-1
1-1
2-1
3-1
1-2
2-1
3-1
1-1
2-1
3-1
1-1
2-1
3-1

©O© 00N O~ WDN P

=P
P o

Station Location

Garnier Bayou
Garnier Bayou
Destin Harbor
Destin Harbor
Destin Harbor
Boggy Bayou
Boggy Bayou
Boggy Bayou
Tom’s Bayou
Tom’s Bayou
Boggy Bayou
Rocky Bayou
Rocky Bayou
Rocky Bayou
Joes Bayou
Joes Bayou
Alaqua Bayou
Alaqua Bayou
La Grange Bayou
La Grange Bayou
La Grange Bayou
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay

Location

Bayou Grande

Bayou Grande

Bayou Grande
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Texar
Bayou Texar

Meant SD

0.4+ 0.1
43+ 0.5
3.2+ 0.5
0.8+ 0.2
0.3+ 0.0
2.2+ 0.6
1.7+ 0.3
3.1+ 0.2
1.6+ 0.4
3.8+ 0.7
1.0+ 0.3
10.8+ 1.8
25+ 04
0.8+ 0.2
0.3x 0.1
0.5+ 0.0
173+ 5.1
7.3+ 2.1
1.0+ 0.3
0.9+ 0.2
27+ 04
1.1+ 0.2
16.8+ 4.9
1.3+ 0.1
8.6+ 0.2
158+ 2.0
2.4+ 0.7
259+ 53
18.3+ 3.7
17.6+x 3.4

Mean+ SD

0.07+ 0.02
0.76+ 0.03
0.2:+ 0.07
0.77+ 0.0:
0.25+ 0.06
0.24+ 0.07
0.63+ 0.17
0.57+ 0.06
0.45+ 0.13
0.32+ 0.03
0.53+ 0.10

significance

*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%

*k

significance

*%
*%
*%
*%
*%
*%
*%
*%
*%
*%

*k



Table 4 continued.

Choctawhatchee Bay, 1994

Block Station

12
13
14

Pensacola Bay, 1993

Station

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Pensacola Bay, 1994

Block Station

(BC) 1-2
(BC) 2-2
(BC) 3-2
(BC) 4-2
(BC) 5-3
(BC) 6-2

Station Location

Bayou Texar
Bayou Texar
Warrington

Location

Bayou Chico
Bayou Channel
Inner Harbor Channel
Inner Harbor
Inner Harbor
Inner Harbor
Pensacola Bay
Pensacola Bay
Inner Harbor
Lower Bay
Lower Bay
East Bay
East Bay
East Bay
Blackwater Bay
Blackwater Bay
Blackwater Bay
Escambia Bay
Escambia Bay
Escambia Bay
Escambia Bay
Escambia Bay
Escambia River Mouth
Escambia
Floridatown
Central Bay

Location

Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico
Bayou Chico

Meant SD

1.21+ 0.16
9.12+ 1.76
7.38+ 1.92

5.89+ 0.23
3.56+ 0.74
4.33+ 0.32
0.09+ 0.01
2.68+ 0.55
0.75+ 0.09
10.03+ 2.6:
12.34+ 1.22
9.08+ 1.37
9.23% 2.16
11.49+ 1.19
1.11+ 0.24
3.36% 0.61
1.62+ 0.35
0.66+ 0.16
8.01+ 1.24
1.05+ 0.11
472+ 1.02
2.33+ 0.21
0.66+ 0.14
9.84+ 1.53
6.65+ 0.07
3.76+ 0.58
2.29+ 0.14
4.49+ 0.88
1.84+ 0.25

1.93+ 0.35
40.53+ 2.35
13.47+ 3.66

0.62+ 0.09

1.73+£ 0.21

0.81+ 0.22

significance

*%

ns

significance

*%
*%
*%
*%
*%

*%

ns
ns
ns
ns
ns

*k
*k
*k
*k

ns
Hk
*k
*k
*k

ns
*k
*k
*k
*k

*%

significance

*%

*%
*%
*%

*k
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Table 4 continued.
St. Andrew Bay, 1993

Block Station Location Meant SD significance
41 West Bay 3.35+ 0.83 *
42 West Bay 0.89+ 0.08 *
43 North Bay 1.66+ 0.27 *
44 North Bay 0.31+ 0.08 o
45 North Bay 0.68+ 0.04 o
46 North Bay 0.1:+£ 0.02 o
47 Lynn Haven 0.74+ 0.07 xx
48 St. Andrew Bay 1.32+ 0.3: *x
49 St. Andrew Bay 0.42+ 0.06 xx
50 St. Andrew Bay 0.18+ 0.03 **
51 St. Andrew Bay 0.48+ 0.10 **
52 St. Andrew Bay 2.1:£ 0.28 **
53 Massalina Bayou 0.15+ 0.04 *x
54 Massalina Bayou 0.20£ 0.02 *x
55 Watson Bayou 0.68+ 0.08 xx
56 Upper Watson 0.14+ 0.02 *x
57 Upper Watson 0.23+ 0.06 *x
58 Mid Watson 0.14+ 0.02 i
59 Mid Watson 0.50+ 0.03 hd
60 Mid Watson 0.23+ 0.05 *
61 Lower Watson 0.22+ 0.04 xx
62 Lower Watson 0.99+ 0.25 **
63 Watson Bayou 0.7:+ 0.16 *x
64 St. Andrew Bay 0.51+ 0.09 o
65 St. Andrew Bay 0.66+ 0.05 xx
66 Mouth of Watson Bayou 0.22+ 0.01 *x
67 St. Andrew Bay 7.29% 2.17 xx
68 Mouth of Pearl Bayou 0.73+ 0.19 o
69 Smak Bayou 0.23+ 0.02 o
70 West-East Bay 0.35+ 0.05 *x
71 East-East Bay 0.62+ 0.16 xx

Table 5. Results of Mutatox tests, expressed as categorical responses. This test was
performed on samples collected during 1994.

Pensacola Bay, 1994 Genotoxic Response
Stratum  Station Location Category
(BC) 1-2 Bayou Chico G
(BC) 2-2 Bayou Chico G
(BC) 3-2 Bayou Chico G
(BC) 4-2 Bayou Chico G
(BC) 5-3 Bayou Chico G
(BC) 6-2 Bayou Chico G
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Table 5 continued.

Choctawhatchee Bay, 1994

Stratum Station
(OA 1-1
(OA 2-1
(COA 3-1
(©)B 1-1
(©)B 2-3
(©)B 3-1
(©cC 1-2
(©cC 2-1
(C)C 3-1
(C)D 1-1
(C)D 2-2
(C)D 3-1
(C)E 1-1
(C)E 2-1
(COE 3-1
(OF 1-1
(OF 2-1
(©G 1-1
(©G 2-1
(©G 3-1
(C)G 4-1
(CH 1-1
(CH 2-1
(©)J 1-1
(©)J 2-1
(COK 11
(COK 2-1
(COK 3-1
(CL 1-2
(CL 2-1
(CL 3-1
(CM 1-1
(CM 2-1
(CM 3-1
(CN 1-1
(CN 2-1
(CN 3-1

Apalachicola Bay, 1994

Stratum  Station

(AA
(AA
(AA
(A)B
(A)B
(A)B
(A)C
(A)C
(A)C

1-1
2-1
3-1
1-1
2-1
3-1
1-1
2-1
3-1

Location

Cinco Bayou
Cinco Bayou
Cinco Bayou
Garnier Bayou
Garnier Bayou
Dons Bayou
Hand Cove, Garnier Bayou
Garnier Bayou
Garnier Bayou
Destin Harbor
Destin Harbor
Destin Harbor
Boggy Bayou
Boggy Bayou
Boggy Bayou
Tom’s Bayou
Tom’s Bayou
Boggy Bayou
Rocky Bayou
Rocky Bayou
Rocky Bayou
Joes Bayou
Joes Bayou
Alaqua Bayou
Alaqua Bayou
La Grange Bayou
La Grange Bayou
La Grange Bayou
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay
Choctawhatchee Bay

Location
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay
Apalachicola Bay

Genotoxic Response
Category

ZZZONVZZ00N0Z0LOLOLuZOHoLHOLZOOnZnuLtooLounuozZ2Z2Z0obZzo

Genotoxic Response
Category

ZZunzZnnzun?z

(N=Negative, or not toxic, G= Genotoxic and S= Suspect).
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Table 8. Spearman-rank correlations (Rho) among the four toxicity tests performed
on 1993 samples from Pensacola Bay.

Microbial Sea urchin Sea urchin
bioluminescence fertilization development
EC50’s (100% WQAP) (100% WQAP)
Amphipod survival -0.164 ns -0.1429999: ns 0.1189999: ns
Microbial
bioluminescence 0.3529999: * 0.2859999: ns
Sea urchin
fertilization 0.3009999: ns

WQAP = water quality adjusted porewater

Table 9. Spearman-rank correlations (Rho) among the four toxicity tests performed on
1994 samples from Bayou Chico and Apalachicola Bays.

Microbial Sea urchin Sea urchin
bioluminescence fertilization development
EC50'’s (100% WQAP) (100% WQAP)
Amphipod survival 0.18199999: ns -0.049 ns 0.1779999: ns
Microbial
bioluminescence 0.350 ns -0.0609999: ns
Sea urchin
fertilization 0.0619999: ns

WQAP = water quality adjusted porewater

Table 10. Spearman-rank correlations (Rho) among the four toxicity tests from
Choctawhatchee Bay.

Microbial Sea urchin Sea urchin
bioluminescence Fertilization Development
EC50's 100% WQAP 100% WQAP
Amphipod Survival 0.029 ns 0.127 ns 0.1859999: ns
Microbial -0.003 ns 0.021 ns
bioluminescence
Sea Urchin 0.1029999: ns

Fertilization

WQAP = water quality adjusted porewater
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Table 11. Spearman-rank correlations (Rho) among the four different toxicity tests

performed in St. Andrew Bay.

Microbial
bioluminescence
EC50's
Amphipod
survival +0.212 ns
Microbial

bioluminescence

Sea urchin
fertilization

Sea urchin Sea urchin
fertilization development
@ 100% WQAP @ 100% WQAP
+0.211 ns +0.075 ns
+0.408 * +0.179 ns
+0.461 *

WQAP = water quality adjusted porewater
* p<0.05
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Table 13. Estimates of the spatial extent of toxicity in Western Florida bays with results
of four different tests.

Apalachicola Bay

Toxicity test Kilometer 2 Percent of Total
Amphipod Survival 0.0 0.0
Sea Urchin Development

100% porewater 157.5 83.96
50% porewater 0.0 0.0
25% porewater 0.0 0.0
Sea Urchin Fertilization

100% porewater 63.56 33.89
50% porewater 0.0 0.0
25% porewater 0.0 0.0
Microtox 186.84 99.6
Survey area 187.58

St. Andrew Bay

Toxicity test Kilometer 2 Percent of Total
Amphipod Survival 0.0 0.0
Sea Urchin Development

100% porewater 7.17 5.6
50% porewater 0.123 0.1
25% porewater 0.0 0.0
Sea Urchin Fertilization

100% porewater 2.28 1.8
50% porewater 0.0 0.0
25% porewater 0.0 0.0
Microtox 127.22 100
Survey area 127.22

Choctawhatchee Bay

Toxicity test Kilometer 2 Percent of Total
Amphipod Survival 0.0 0.0
Sea Urchin Development

100% porewater 116.06 45.4
50% porewater 0.75 0.30
25% porewater 0.0 0.0
Sea Urchin Fertilization

100% porewater 113.14 44.46
50% porewater 35.73 13.87
25% porewater 0.09 0.04
Microtox 254.47 100
Survey area 254.47
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Table 13 continued.
Pensacola Bay
Toxicity test

Amphipod Survival

Sea Urchin Development
100% porewater

50% porewater

25% porewater

Sea Urchin Fertilization
100% porewater

50% porewater

25% porewater

Microtox

Survey area

Kilometer ?
0.04

5.41
0.61
0.19
14.4
0.28
0.28
262.75

272.63

Combined Western Florida survey area

Toxicity test

Amphipod Survival

Sea Urchin Development
100% porewater

50% porewater

25% porewater

Sea Urchin Fertilization
100% porewater

50% porewater

25% porewater

Microtox

Total Survey area

Kilometer ?
0.04

286.1
15
0.2
193.4
36.0
0.4

831.2

841.9

Percent of Total
0.015

1.98
0.22
0.07

5.28
102
102

96.37

Percent of Total
0.005

34.0
0.2
0.02

23.0
4.3
0.04

98.7
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Table 19. Summary of toxicity/chemistry relationships for samples from Pensacola Bay.

No. of No. of samples Toxic/non-toxic ratios Toxic/SQGs ratios (TELS)

significant > SQGs Micro- ~ Urchin  Urchin Micro-  Urchin  Urchin
Chemical correlations ERLs  TELs tox. fertn.  dev't. tox. fertn.  devt.
Cadmium 3 0.0 0.0 4.1 <1.0 4.2 <1.0 <1.0 1.8
Copper 3 0.0 3 2.0 <1.0 3.5 2.2 <1.0 4.4
Lead 2 1 4 1.6 <1.0 2.1 2.1 <1.0 3.2
Zinc 2 5 10 1.7 <1.0 3.5 2.0 <1.0 4.0
Sum LMW PAH 3 0.0 4 2.6 <1.0 3.1 1.7 <1.0 2.6
Sum HMW PAH 3 3 7 2.9 <1.0 2.4 8.2 <1.0 113
4,4'-DDD 2 na 9 25 <1.0 2.6 1.7 <1.0 164
4,4'-DDT 2 na 7 15 <1.0 5.2 5.7 <1.0 107
Total DDTs 3 6 6 2.2 <1.0 3.0 6.9 <1.0 10.7
Dieldrin 2 na 6 <1.0 1.1 3.0 <1.0 <1.0 8.7

na = no applicable Sediment Quality Guidelines available
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Table 24. Stations within Choctawhatchee Bay in which chemical concentrations
equalled or exceeded their respective sediment quality guidelines or toxicity thresh-
olds (n=20 for organics, n=20 for metals). Stations with two-fold or greater exceedances
are listed in bold.

Chemical Greater than or equal to Greater than or equal to Greater than or equal to
substance ERM value PEL value SQC or LOEC/NOEC
Silver F1-1, F2-1 F1-1, F2-1 na

Dibenzo (a, h) anthracene none Al-1 na
Chrysene none Al-1 na
Benzo(a) pyrene none Al-1 na
Benz(a)anthracene none Al-1 na

Dieldrin na Al-1 none

Endrin na na C3-1,D1-1
p, p’-DDE F1-1 none na
p,p’-DDD na F1-1 na
p,p’-DDT na F1-1 na

Total DDTs F1-1 F1-1 na

UAN LOEC for urchin development na na B3-1, K2-1
UAN LOEC for amphipod survival na na none

* ERL and ERM values from Long et al. (1995); TEL and PEL values from MacDonald (1994),SQCs from U.
S. EPA, 1994;

urchin development LOEC from Long et al, In press; and amphipod NOEC from Kohn et al., 1994.

na = no applicable values.
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Table 28. Correlations between bioassay results and chemical concentrations for all

102 western Florida samples.

Microtox
Rho signif.

Unionized ammonia in toxicity test chambers
UAN - porewater nd -0.453

Major and trace elements

Silver -0.341 *
Arsenic -0.061 ns
Cadmium -0.307 *
Chromium -0.043 ns
Copper -0.287 *
Mercury -0.351 *
Nickel -0.042 ns
Lead -0.262 ns
Antimony -0.239 ns
Selenium -0.020 ns
Tin -0.324 *
Zinc -0.271 ns
Sum of 9 metals ERMs -0.245 ns
Sum 5 SEM -0.342 ns

Organic compounds

Sum LPAH -0.421 *
Sum HPAH -0.341 *
Sum PAHs -0.355 *
Sum all PAHs +0.224 ns
Acenaphthylene (ug/goc) +0.084 ns
Fluoranthene (ug/goc) -0.065 ns
Phenanthrene (ug/goc) -0.224 ns
Sum of 13 PAH ERMs -0.375 *
Total PCBs -0.397 *
Total DDTs -0.486 *
Total Pesticides -0.443 *x
dieldrin (ug/goc) +0.094 ns
endrin (ug/goc) +0.616 rxk
Sum of 3 COH ERMs -0.442 *
Sum of 25 ERMs -0.293 *

Urchin fertilization

Urchin development

Rho

*k

-0.188
-0.308
-0.270
-0.243
-0.309
-0.211
-0.295
-0.329
-0.282
-0.426
-0.259
-0.370
-0.330
-0.298

-0.079
-0.238
-0.206
-0.601
-0.341
-0.250
-0.121
-0.175

-0.159
-0.060
-0.125
-0.268
-0.212
-0.124

-0.312

signif.

-0.6919:

ns
ns
ns

*k%k

ns
ns
ns

ns

ns
ns
ns
ns

Rho  signif.

*kk

-0.177
-0.222
-0.238
-0.183
-0.291
-0.142
-0.201
-0.255
-0.166
-0.279
-0.186
-0.365
-0.273
-0.270

-0.090
-0.172
-0.158
-0.454
-0.379
-0.335
-0.248
-0.143

-0.107
+0.057
+0.001
-0.360
-0.225
-0.015

-0.252

ns
ns
ns
ns

ns
ns
ns
ns

ns

ns
ns

ns
ns
ns

*%

ns
ns

ns

ns

ns

ns
ns

ns

SEM = simultaneously-extracted metals
UAN = un-ionized ammonia

ERM = effects range-median

COHs = chlorinated organic hydrocarbons
PAHs = polynuclear aromatic hydrocarbons
LPAHs = low moluecular weight PAHs
HPAHSs = high molecular weight PAHs

nd = no data
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APPENDICES

Appendix Al: Field notes from Pensacola Bay; 1993 and 1994.
APPENDIX A2. Field notes from Choctawhatchee Bay.

Appendix A3. Field notes from St. Andrews Bay.

APPENDIX A4. Field notes from Apalachicola Bay.

Appendix B1. Chemistry and toxicity data from Pensacola Bay, 1993.

Appendix B2. Chemistry and toxicity data from Choctawhatchee Bay,
1994.

Appendix B3. Chemistry and toxicity data from St. Andrew Bay.

Appendix B4. Chemistry and toxicity data from Bayou Chico and
Appalachicola Bay.
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Appendix Al. Field notes from Pensacola Bay; 1993 and 1994 (continued).
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Appendix Al. Field notes from Pensacola Bay; 1993 and 1994 (continued).

‘7661 pue €66T ‘Aeg ejodesuad Wwoiy sajou pald TV XIANIddV




¢-9

'ON uonels

(o09)

(o09)

(09)
(09)
(o09)

(o9)
v66T
'ON elels
(09)

(09)
(09)

(09)
(09)

(09)
v66T

‘'ON uonels 'ON elells

(SSeI0 pool Juely) ouloloygs JUoJEeIPE
uo -dds sanwbelyd ‘uauodwod pues [ews ‘sugap luejd ‘mojaq aixoue ‘Aed AIs auIAljO 021yD noAeg
‘aus Bundwes wolp w Qg 1eoq e Hunured ‘mojaq
B ‘92elns 1e JIX0 wd T ‘lopo SgH ‘swuawbel) jueld ‘ussys wnsajonad ‘Aeja Ayons :qeub pig
‘usays wnajonad ‘oiIxo ‘Aejo Apues ‘ysey ||ays awos mojaq JaAke| pues umoiq 1ybi1 oo1lyD noAeg
‘usays wnajonad ‘1ake| 20]} Japun pues asow :qelb pug ‘sdwn| ul Ae|d ‘pues jo uonoel}
‘suqap jueld awos ‘Aejd AJIS Snounyns »oe|q 2JIXOue JBA0 20|} umoiq 1ybi wo g/T :qesb 1ST 021yD nokeg
‘pue|st uo Aiayoo0l piig :sueadeisnio ‘oIxo ‘Auuni ‘snouslelab ‘Aejo Ajis umoluq 1ybi7 021IyD noAeg
“ISAN ‘.pnw pooy Ageq, ‘lIS |BO2JBYI/BUIAIIO-}OB|g ‘lOp0 SZH - snoidnyns AlybiH od1yD noAeg
"aljoydouald
awos yum asreuuolew oe|q :qelb yipy ‘pues awos olul Moeq :qelb plg ISAN ‘9sieuuoAew
Noe|q :qedb pug ‘IOpo SZH ‘pues asieod-wnipaw JSA0 JaAe| dixoue Xoe|q wd Z/T :qelb 1ST 021yD noleg
uondiiosag juawipas
006°6€ 005'veE v g've 6'8 G6T 0'8¢ ¢-9
00Z'v€ 006°'TV 0'6 06T [ G'G¢ 0'TE €-9
000‘EY 002‘6¢ Ve T°L¢ 6'8 0°LT G'9¢ c-v
005'9¢ 008°‘ce 0¥y 0'¢e 2'S 06T 0'6¢ ¢-€
00G'TY 008°‘ce L0 0'S¢ '8 0'vt 0'L¢c ¢-¢
pu pu *G°0 pu x0'9 pu *xGC ¢'1
59|OW 0JoIW Sajow  0Jolw 1/6w 1dd 7/6w 1dd Do
AlAnldoNpuod ‘O’ wonog  ‘[es -uig '0'q doy  Anuies doyl -dwsl "wig ‘ON uoneis
8'0¢€ pu L'¢C M. 877148 N. 96'€20€ Wd 0Z:¥T v6/¥/9 091yD nokeg Z-9
G'L¢C pu 9'¢ M., SG9'VT48 N. TO¥20E INd OV:ET  +6/¥/9 001lyD nokeg €-9
G'0€ 0'9¢ 6'€ M. T6'7T48 N. ST'¥20€ INd S0:ZT +6/¥/9 021yD nokeg v
0'TE pu ¢'T M. 02'GT48 N. ST¥20€ WV 0Z'TT +6/¥/9 021yD nokeg ¢-¢
0.2 pu v'e M. ¥€'GT48 N, SZ'¥20E WV v¥:0T v6/¥/9 021yD nokeg z-C
*6¢ 0'¢e L€ M. 87'GT48 N. ¢v'vZ0€ WY GT:6 v6/¥/9 001yD nokeg -1
Do Do (W)uidaag M . N o
‘dwa)] dol dwel .y 191 M\ apnybuon apnine’ awl] aleQ uolileoso
'¥66T pue £66T ‘Aeg elodBSUSd WOJ) S8J0U pIdl4 TV XIANIddV

Appendix Al. Field notes from Pensacola Bay; 1993 and 1994 (continued).
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