' & IAN HARTWELL

January 12, 1998

Ed Long NOAA\ORCA Bioeffects Assessment Branch 7600 Sand Point Seattle, WA 98115

Jawed Hameedi DOC/NOAA/NOS/ORCA/CMBAD 1305 East West Highway SSUM-4, N/ORCA21 Silver Spring, MD 20910

Dear Ed and Jawed:

The enclosed revised report includes the most recent testing by P450 RGS of the most highly contaminated samples using our two-time-interval assay. We have shown that samples containing only PAHs will always decrease in induction between 6 and 16 hours, as the P450 produced is degrading the compounds over time. Since the chlorinated chemicals which induce this system (coplanar PCBs, dioxins, furans) are not readily degraded, the response to these compounds is always greater at 16 hours than at 6 hours. Mixtures of the two types of inducing compounds, as explained in the report, will give intermediate responses. Figure 4 shows that the RGS response to NOAA # 11 is predominately from chlorinated hydrocarbons, but the other 12 samples tested at two time periods contain lower levels of chlorinated hydrocarbons. Significant amounts of both classes of inducing compounds are present in each of the 13 samples.

Thank you for providing the additional funds to screen these samples at both time periods, and I will be pleased to answer any questions you may have regarding the latest results. We look forward to working with you both on another NOAA project in the future.

Sincerely, Jack W. (Inderon

fack W. Anderson Senior Aquatic Toxicologist

RESPONSE OF THE P450 RGS ASSAY TO EXTRACTS OF SEDIMENTS COLLECTED FROM DELAWARE BAY

ТО

ED LONG NOAA/ORCA BIOEFFECTS ASSESSMENT BRANCH 7600 SAN POINT SEATTLE, WA 98115

AND

JAWED HAMEEDI DOC/NOAA/NOS/ORCA/CMBAD 1305 EAST WEST HIGHWAY SSUM-4, N/ORCA21 SILVER SPRING, MD 20910

FROM

JACK ANDERSON and JENNIFER JONES COLUMBIA ANALYTICAL SERVICES 6060 CORTE DEL CEDRO CARLSBAD, CA 92009

Revised January 12, 1998

RESPONSE OF THE P450 RGS ASSAY TO EXTRACTS OF SEDIMENTS COLLECTED FROM DELAWARE BAY

ABSTRACT

The induction of the cytochrome P450 gene family, specifically CYP1A1, in response to toxic and/or carcinogenic organic compounds is widely used as a biomarker for exposure to contaminants in the aquatic environment. Organic compounds, including dioxins, furans, coplanar PCBs, and high molecular weight PAHs, are known to bind to an intracellular cytosolic protein referred to as the aryl hydrocarbon (Ah) receptor. This complex is translocated to the nucleus of the cell, where it interacts with xenobiotic response elements in the promoter of the CYP1A1 gene and causes transcription of the P450 enzyme system. CYP1A1 induction has been used in the development of toxic equivalency factors (TEFs) for polychlorinated dibenzo-dioxins (PCDDs), polychlorinated dibenzo-furans (PCDFs), and PCB congeners as a measure of their potency relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin. TEFs have been developed by EPA for PAHs as a measure of carcinogenic potential compared to benzo[a]pyrene.

The P450 Reporter Gene System (RGS) measures induction of the CYP1A1 protein via the reporter gene, firefly luciferase, to determine the presence of inducing compounds in environmental samples. As such, RGS gives an actual assessment of the potential of contaminants on sediments at a specific site to produce chronic and/or carcinogenic effects on flatfish if they were to occupy the site. It also gives an indication of the chronic effects on benthic organisms at the site, as an RGS response above 60 μ g of benzo[*a*]pyrene equivalents per g was highly correlated with degradation of infaunal communities in San Diego Bay, CA.

This testing program was designed to determine the potential toxicity and carcinogenicity of sediments collected from Delaware Bay. The results of this project illustrate the ability of P450 RGS to identify, rapidly and inexpensively, the most toxic and hazardous samples within a harbor, bay or coastal section. Using the entire data set (n = 81), 13 sediment samples were identified as containing concentrations greater than 60 μ g B[a]PEq/g. The mean for all samples was 57 $\mu g B[\alpha]PEq/g$, and there was a great deal of variation with the standard deviation of 191 μ g B[a]PEq/g. Using the 95% confidence value of 41.5, 11 samples were found to be significantly higher in potential toxicity, as they were above the upper 95% confidence interval (99 μ g B[a]PEq/g). The sample that was by far the highest in CYP1A1 inducing compounds (1,584 μ g B[a]PEq/g) was tested at both 6 and 16 hours of exposure, and the observed responses indicated the presence of chlorinated organics (coplanar PCBs, dioxins, furans). The 13 samples producing the highest RGS responses at 16 hours were diluted and tested at both 6 and 16 hours to provide an estimate of the relative contributions from PAHs and chlorinated organics. Even the 1:300 dilution of sample #11 showed a prominent contribution from the slower acting chlorinated hydrocarbons. The other 12 samples exhibited responses which indicated the primary inducing compounds were PAHs, but chlorinated organics were also contributing to the total CYP1A1 induction measured.

INTRODUCTION

The induction of the cytochrome P450 gene family, specifically CYP1A1, in response to toxic and/or carcinogenic organic compounds is widely used as a biomarker for exposure to contaminants in the aquatic environment. Organic compounds, including dioxins, furans, coplanar PCBs, and high molecular weight PAHs, are known to bind to an intracellular cytosolic protein referred to as the aryl hydrocarbon (Ah) receptor. This complex is translocated to the nucleus of the cell, where it interacts with xenobiotic response elements in the promoter of the CYP1A1 gene and causes transcription of the P450 enzyme system. CYP1A1 induction has been used in the development of toxic equivalency factors (TEFs) for polychlorinated dibenzo-dioxins (PCDDs), polychlorinated dibenzo-furans (PCDFs), and PCB congeners as a measure of their potency relative to 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (Safe 1994). Similarly, TEFs have been developed for PAHs as a measure of carcinogenic potential compared to B[*a*]P (U.S. EPA 1993).

The induction of the cytochrome P450 gene family, specifically CYP1A1, in response to PAHs has been extensively studied in fish (Stegeman and Hahn 1994, Collier *et al*, 1995, 1996). These studies have demonstrated that higher levels of P450 in fish are correlated with increased sediment contamination, especially by PAHs, and histological and reproductive effects on the fish.

The P450 Reporter Gene System (RGS) measures induction of the CYP1A1 protein via the reporter gene, firefly luciferase, to determine the presence of inducing compounds in environmental samples (Anderson *et al* 1995, 1996, 1997). As such, RGS gives an actual assessment of the potential of contaminants on sediments at a specific site to produce chronic and/or carcinogenic effects on flatfish if they were to occupy the site. It also gives an indication of the chronic effects on benthic organisms at the site, as an RGS response above 60 μ g of benzo[*a*]pyrene equivalents per g was highly correlated with the degradation of infaunal communities in San Diego Bay (Fairey *et al* 1996).

In recent NOAA studies, RGS responses have correlated very well (r^2 about = 0.7 - 0.8) with the concentrations of total PAHs in sediments, and even better (r^2 about = 0.85) with the concentrations of high molecular weight PAHs (Anderson and Jones 1997). Strong correlations have also been demonstrated with subsequent analyses of chlorinated compounds (dioxins/furans) in soil samples. In addition, RGS benzo[*a*]pyrene equivalents obtained in analysis of extracts of mussel tissue were highly correlated ($r^2 = 0.9$) with the presence of 4- to 6 -ring PAHs reported from chemical analytical data.

This testing program was designed to determine the potential toxicity and carcinogenicity of sediments collected from Delaware Bay. P450 RGS analysis by Columbia Analytical Services (CAS) was used to determine the induction of CYP1A1 in a human liver cancer cell line (101L).

METHODS

The basic methodology of the P450 Reporter Gene System (RGS) has been described elsewhere (Anderson *et al* 1995, 1996). RGS has been approved as Standard Method 8070 (APHA 1996) and an ASTM Standard Guide E1853-96 (ASTM 1997) is available. Included in the Appendix are the raw data from the RGS assays, the Quality Assurance data on sample spiking, etc., information on sample weights, and chain-of-custody documents. A disk with the Excel file for this project, in PC and Mac format is enclosed with this report.

Approximately 20 grams of sediment from each station were extracted by EPA method 3550 to produce 1 mL of dichloromethane (DCM) containing the extractable organic compounds. These extracts were then exchanged into 2 mL of DMSO. One mL of this DMSO was shipped to Tom Johnson of USGS for Microtox testing and the other was used in RGS testing. In the Carlsbad CAS laboratory we applied 10 μ L of the DMSO to the cells in three replicate wells containing 2 mL of culture medium. After 16 hours of incubation, the cells were washed, then lysed, the solution centrifuged, and 50 μ L of the supernatent was measured for luminescence. Solvent blanks and two reference toxicants (2,3,7,8-dioxin and B[*a*]P) were used with each sample test run.

Equivalency Calculations

This report assigns Benzo[a] pyrene Equivalents (B[a]PEq) and Toxic Equivalency Quotients (TEQ) for each of the 81 sediment extracts. The B[a]PEq values are a measure of potential inducing PAHs in the sample and are calculated as follows:

$B[a]PEq (\mu g/g) = (fold induction / 60) * (volume factor / dry weight)$

Fold induction is calculated as mean relative light units (RLUs) produced by the sample divided by mean RLUs produced by the solvent blank. Sixty is the fold induction produced by 1.0 μ g of B[a]P/mL. The volume factor brings the amount of sample applied up to the total extract volume. Because 10 μ L of the 2mL extracts were used in these tests, the volume factor used here was 200. Final division by the dry weight, which was calculated using per cent solids of the 20 gram samples, yields B[a]PEq's in μ g/g.

The TEQs are a measure of dioxin equivalents and are calculated using:

TEQ (ng/g) = (fold induction * volume factor) / (1000 * dry weight)

Using a concentration-response curve developed for a dioxin/furan mixture, the RGS fold induction is linear and equal to the concentration of the mixture in pg/mL. By multiplying the fold induction produced by the sample by the volume factor (200), then dividing by 1000 (to convert pg to ng) and the dry weight of the sample, we arrive at a TEQ in ng/g.

Statistical Analysis

Microsoft Excel 5.0 was used to determine the mean RGS response, the standard deviation and the 95% confidence interval of the B[a]PEq values of all 81 samples. This interval was then used to determine which samples were significantly greater than the mean.

P450 RGS Time Course Experiments

Because PAHs are metabolized more readily by the 101L cells than are chlorinated compounds, the RGS response to PAHs reaches a maximum at 6 hours, whereas the response to chlorinated compounds peaks at 16 hours. Comparison of the RGS responses at the two time periods enables the identification of the types of contaminants and their relative contributions in an environmental sample. Studies indicate that when only PAHs are present, the 6h response is always at least 5 times greater than the 16h response, whereas when only chlorinated compounds are present, the 16h response is always greater than the 6h response. When both PAHs and chlorinated compounds are present, the response vary according to the relative proportion of the chlorinated compounds. In the figure below, (A) shows that the response will decrease less than 5 times with low concentrations, stay the same with moderate concentrations (B), or increase with high concentrations of chlorinated compounds (C, actual field sample).

Samples judged to contain levels of inducing compounds found in previous studies to be associated with degraded benthic communities (60 μ B[a]PEq/g), were selected for RGS analyses at two time intervals.

Quality Control and Quality Assurance

QA/QC procedures used during the course of RGS analysis included the spiking of samples with B[a]P, and monthly luciferase standard curves. To insure that each sample result was within the linear range of RGS response, the sample was diluted and retested if the fold induction was greater than 100. In addition, when the coefficient of variation (as per cent of the mean) of three replicates was greater than 20%, the sample was retested.

RESULTS

The results of this project are summarized in the following tables and figures. A disk is enclosed with Excel PC and Mac files that can be used to conduct any comparisons NOAA would like to perform. The text of this report will primarily provide an overview of the findings. The sample information, raw data from the tests, and the quality assurance data may be found in the Appendix. The first table in the Appendix lists the percent solids and the subsequent dry weights of each of the 81 samples sent to the Columbia Analytical Services laboratory in Kelso, Washington, for extraction and solids measurements.

The second table in the Appendix shows the results of 9 different runs of the RGS assay, where the luminometer relative light unit (RLU) readings for each replicate of the extracts, as well as dichloromethane (DCM), dimethyl sulfoxide (DMSO), 2,3,7,8-tetrachloro-dibenzodioxin (TCDD), and benzo[a]pyrene (B[a]P) are listed. The % CV, as well as the variability of the TCDD/solvent ratios will be discussed below under QA/QC data. As in all other testing, three replicate wells were used to produce the RGS response for each sediment extract. The mean of these three replicates was used to produce fold induction values, which were then converted to B[a]PEQs and TEQs. Testing at two time intervals utilizes two replicates at each time period.

When the coefficient of variation of the mean (% CV) was greater than 20%, the sample was retested, and the average of the test B[a]PEQs was then used as the final B[a]PEq value. In addition, when the fold induction was greater than 100, the sample was diluted 1:10 or greater in DMSO and retested. In 13 cases a 1:10 dilution was adequate to reduce the fold induction to less than 100. NOAA sample # 29 required a 1:50 dilution and a 1:100 dilution was necessary to reduce the induction of NOAA # 11 to the appropriate range. Only the results from the final dilution assays were used to produce the equivalency values, shown in the summary table and figures in the following section of the report.

Table 1 summarizes the findings of the P450 RGS Analysis of the 81 samples from Delaware Bay. Samples are listed by both the CAS number and the Client (NOAA) number. Table 1 includes both the μg of B[a]PEq /g and the Toxic Equivalency (TEQ in ng/g) for each sample, as the former is appropriate for PAH contamination and the TEQ is the usual manner of expressing the potential toxicity of coplanar PCBs or dioxin contamination. Figure 1 shows the distribution of the 81 samples, demonstrating that about 25 % were less than 1.0 µg B[a]PEq/g. Of the remaining 75 %, about one-half were between 1 and 10 µg B[a]PEq/g, and the other half were between 10 and 1000 μ g B[a]PEq/g. Figure 2 shows that there were 10 samples of greater than 100 μ g B[a]PEq/g, with the most contaminated sample (NOAA #11) reaching 1,584 μ g B[a]PEq/g. Statistical analyses of the data produced a mean of 57.4 μ g B[a]PEq/g, with a standard deviation of 190.8 µg B[a]PEq/g. The 95 % confidence interval was 41.5, so the samples above 99 μ g B[a]PEq/g were significantly higher than the mean. As noted above there were 10 samples that fell into this category. Another way of examining the data would be to evaluate those samples that were greater than 60 μ g B[a]PEq/g, which has in the past been observed to be the level at which effects on the benthos were observed. Figure 3 shows the 13 samples (in a log plot) which fall into this category.

To evaluate whether the very high induction observed in NOAA sample #11 was the result of PAH or chlorinated hydrocarbon contamination, a two-time-interval assay was conducted. The response at 16 hours was 2.5 times the response at 6 hours of exposure. These findings clearly indicate that chlorinated hydrocarbons (coplanar PCBs, dioxins, furans) are making a major contribution to the induction measured for this sample.

After approval by the NOAA office, additional two-time-interval testing was conducted. Figures 4A and 4B show the results of these tests on 1:10 and 1:100 dilutions of the 13 samples producing the highest CYP1A1 induction at 16 hours. Since 1:10 dilutions produced relatively high induction, it was determined that all samples should be diluted to 1:100. While 1:10 dilutions of samples 16 and 20 produced higher RGS responses at 16 than 6 hours, further dilution decreased the relative amount of induction at 16 hours for all samples except #11. This sample was diluted 1:300 and again tested at two time intervals (Figure 4C). The significance of these findings will be considered in the Discussion section.

Spiking Studies

In the Appendix are the results of the spiking of samples with 300 ng/mL of B[a]P. The last column gives the % additivity, calculated as the observed fold induction of the spiked sample divided by the fold induction expected by adding the induction from the unspiked sample to that of the toxicant. The variability in % additivity appears to be related to the variability in RGS response to specific mixtures of toxicants. Percent recovery was greater than 100% for samples 10 and 37. The response of sample 10 was possibly high because of some interaction between the B[a]P spike and chlorinated hydrocarbons in the extract. Sample 37 was low in B[a]P equivalents (5.2 μ g/g), so was not tested at two time intervals but the presence of chlorinated compounds could have contributed to the high recovery (145%) observed.

	B[a]P Eq.	TEQ]	[B[a]P Eq.	TEQ
Client I.D.	(µg/g dry)	(ng/g dry)		Client I.D.	(µg/g dry)	(ng/g dr
11	1583.99	95.04	1	57	3.74	0.22
89	396.85	23.81		15	3.42	0.21
13	344.65	20.68		44	3.38	0.20
4	313.01	18.78		66	3.02	0.18
29	298.41	17.90		56	2.95	0.18
8	226.59	13.60		55	2.78	0.17
7	225.52	13.53		50	2.73	0.16
20	183.08	10.98		12	2.36	0.14
16	130.58	7.83		59	2.34	0.14
19	124.19	7.45		31	1.93	0.12
10	115.12	6.91		41	1.81	0.11
2	83.28	5.00		60	1.79	0.11
17	62.29	3.74		33	1.73	0.10
85	48.14	2.89		58	1.66	0.10
6	47.59	2.86		43	1.46	0.09
18	47.36	2.84		61	1.32	0.08
1	38.41	2.30		32	1.30	0.08
3	37.86	2.27		46	1.19	0.07
90	28.32	1.70		39	1.08	0.06
91	27.80	1.67		35	1.05	0.06
26	25.18	1.51		45	1.04	0.06
25	20.41	1.22		67	0.99	0.06
23	18.84	1.13		5	0.72	0.04
14	17.95	1.08		73	0.70	0.04
22	16.32	0.98		47	0.68	0.04
92	15.49	0.93		54	0.62	0.04
84	14.33	0.86		53	0.60	0.04
28	12.97	0.78		52	0.58	0.03
24	12.54	0.75		63	0.52	0.03
30	9.25	0.56		65	0.44	0.03
38	8.89	0.53		72	0.43	0.03
9	8.40	0.50		68	0.42	0.03
21	7.93	0.48		69	0.42	0.03
27	7.87	0.47		48	0.41	0.02
40	7.20	0.43		70	0.37	0.02
36	6.86	0.41		49	0.33	0.02
88	6.65	0.40		71	0.32	0.02
34	5.34	0.32		64	0.24	0.01
37	5.20	0.31		62	0.24	0.01
42	4.17	0.25		51	0.22	0.01
87	3.78	0.23	L			

Table 1. Summary of P450 RGS Equivalency Values of Delaware Bay Sediment Extracts

Figure 1. Distribution of 81 Samples from Delaware Bay

Figure 2. P450 RGS B[a]P Equivalents in Delaware Bay Extracts

µg/g B[a]PEq

Quality Control and Quality Assurance

Also in the Appendix is a table summarizing the coefficients of variation (% CV) of the TCDD, DCM, DMSO, B[a]P, and the mean % CV of the samples tested in each of the test runs. Shown are the means, standard deviations and coefficients of variation for TCDD/DCM and TCDD/DMSO ratios and the B[a]P folds. The mean fold induction for 300 ng/mL B[a]P was 14.3, which is very near the average of 13.5 ± 4.4 found in our past concentration-response studies using B[a]P. Ratios of TCDD to both solvents were also very near the running average for these responses. Two figures demonstrate the monthly assessment of the ability of the luminometer to produce a linear concentration-response curve and to detect levels of a standard luciferase down to 2 picograms.

DISCUSSION

Unlike the recently completed Northern Puget Sound Study, the samples collected in this project have produced a very wide range of P450 RGS responses (0.2 to 1,584 μ g B[*a*]PEq/g). Without knowing anything about the collection sites, it is difficult to discuss relationships between various sets of samples. It is interesting and perhaps coincidental, that the first 37 samples extracted by our CAS Kelso laboratory were, in general, at the low end (0.2-7.2 μ g B[*a*]PEq/g) of the data set. We will be most interested in learning about the collection sites and helping to determine any patterns in contamination that may exist. Since the responses of the most contaminated sample (NOAA # 11) tested at two time intervals indicated significant amounts of PCBs or other chlorinated hydrocarbons were present, we requested and obtained approval to conduct this type of testing on the other 12 samples which produced a response above 60 μ g B[*a*]PEq/g.

The findings of this latter phase of the program requires some explanation. It is clear that regardless of the dilution (up to 1:300), sample #11 gives a strong signal of contamination from chlorinated hydrocarbons. At the 1:100 dilution, it is more difficult to assess the other 12 samples. Six of these tested at 1:10 exhibited responses indicating the presence of both PAHs and chlorinated hydrocarbons. With greater dilution, it appears that these chlorinated compounds have been reduced to such a low level that they are no longer being represented in the 16 hour response. The PAHs are clearly more concentrated than the chlorinated hydrocarbons in these 12 samples. However, the data from 1:10 dilutions indicated that there were significant amount of chlorinated hydrocarbons contributing to the overall induction.

We would like to use our results in aiding to interpret the distribution of the two classes of contaminants in the samples collected from Delaware Bay. Knowledge of the location of the samples in this estuary may help us to interpret our findings. Based on the findings presented in Figure 4, sample 11 was clearly shown to contain substantial amounts of chlorinated compounds. We would expect to see a contribution of these compounds to samples taken in the vicinity of sample 11. It is possible that the other 12 samples shown in Figure 4 were collected in that area, but at this time we have no knowledge of the sampling plan.

REFERENCES

- Anderson, J.W., S.S. Rossi, R.H. Tukey, Tien Vu, and L.C. Quattrochi. 1995. A Biomarker, 450 RGS, for assessing the potential toxicity of organic compounds in environmental samples. *Environmental Toxicology and Chemistry* (7) 14:1159-1169.
- Anderson, J.W., Bothner, K., Vu, T. And R.H. Tukey. 1996. Using a Biomarker (P450 RGS) Test Method on Environmental Samples, pp. 277-286, Chapter 15, In: <u>Techniques in</u> <u>Aquatic Toxicology</u>, Ed. by G.K. Ostrander, Lewis Publishers, Bocha Raton, FL.
- Anderson, Jack W., Kristen Bothner, David Edelman, Stephen Vincent, Tien Vu, and Robert H. Tukey. 1996. A biomarker, P450 RGS, for assessing the potential risk of environmental samples, Chapter 12, pp 150-168, In: <u>Biomarkers for</u> <u>Agrochemicals and Toxic Substances</u>: <u>Applications and Risk Assessment</u>, edited by J. Blancato, R. Brown, C. Dary, and M. Saleh, American Chemical Society, Symposium Series 643, Washington, D. C.
- Anderson, J.W. and J.M. Jones. 1997. P450 RGS: A Rapid, Inexpensive Screening Test for Seafood Contamination. Final Report Submitted to NOAA under the Cooperative Agreement #NA37FD0193; March 15, 1997.
- Anderson, J.W., F.C. Newton, J. Hardin, R.H. Tukey, and K.E. Richter. *In Press*. Chemistry and toxicity of sediments from San Diego Bay, including a biomarker (P450 RGS) response. <u>Environmental Toxicology and Risk Assessment</u>: <u>Biomarkers and Risk Assessment</u>, 5th Volume, ASTM STP 1306, D.A. Bengtson, and D.S. Henshel, Eds., American Society for Testing and Materials, Philadelphia.
- Anderson, Jack W., Kristen Bothner, Jay Means, Debra McMillin, Tien Vu and Robert Tukey. *Submitted.* Correlation of CYP 1A1 Induction, as Measured by the P450 RGS Biomarker Assay, with Benzo(a)pyrene Equivalents (BaPTEQs) in Extracts of Mussels Deployed at Various Sites in San Diego Bay. To be published as part of a special issue of *Marine Environmental Research* on biomarkers in deployed mussels.
- APHA. 1996. P450 Reporter Gene Response to Dioxin-like Organics. Method 8070, In: Standard Methods for the Exmination of Water and Wastewater, 19th Edition Supplement, pp. 24-25, American Public Health Association, Washington, D.C.
- ASTM. 1997. E 1853-96 Standard Guide for Measuring the Presence of Planar Organic Compounds which Induce CYP1A, Reporter Gene Test Systems, pp. 1392-1397 In: Volume 11.05, Biological Effects and Environmental Fate; Biotechnology; Pesticides, 1997 Annual Book of ASTM Standards, Section 11 Water and Environmental Technology, American Society for Testing and Materials, West Conshohocken, PA, August 1997.

- Collier, T.K., B.F. Anulacion, J.E. Stein, A. Goksoyr, and U. Varanasi. 1995. A field evaluation of Cytochrome P4501A as a biomarker of contaminant exposure in three species of flatfish. *Environ. Toxicol & Chem.* 14: 143-152.
- Fairey, R., C. Bretz, S. Lamerdin, J. Hunt, B. Anderson, S. Tudor, C.J. Wilson, F. LaCaro, M. Stephenson, M. Puckett, E.R. Long. 1996. Chemistry, toxicity, and benthic community conditions in sediments of the San Diego Bay Region, Final Report. Report by State Water Resources Control Board, National Oceanic and Amospheric Administration, California Department of Fish and Game- Marine Pollution Studies Laboratory, Moss Landing Marine Laboratories; 169 pp. + appendices.
- Safe, S.H. 1994. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. *Crit. Rev. Toxicol.* 24:87-149.
- U.S. Environmental Protection Agency. 1993. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Prepared by the Environmental Criteria and Assessment Office, Office of Research and Development, Washington, DC. Report No. EPA/600/ R-93/089.

APPENDIX

Jelaware I	Bay Sedime	ent Extracts				
	vived 10/7/97	1				
Client I.D.	CAS #	Sample Wt (g)	% Solids	Dry Wt (g)	Final Extrac	t Vol (mL)
62	K6874-1	20.67	81.0	16.7	2	
63	2	20.23	80.2	16.2	2	
68	3	20.24	78.6	15.9	2	
64	4	20.22	82.2	16.6	2	
65	5	20.54	79.7	16.4	2	
67	6	20.10	71.0	14.3	2	
69	7	20.47	81.3	16.6	2	
70	8	20.18	81.7	16.5	2	
72	9	20.45	82.3	16.8	2	
73	10	20.43	79.5	16.2	2	
71	11	20.62	83.8	17.3	2	
66	12	20.63	68.6	14.2	2	
55	13	20.20	74.6	15.1	2	
50	14	20.26	71.3	14.4	2	
54	15	20.52	74.0	15.2	2	
56	16	20.11	68.9	13.9	2	
53	17	20.15	76.9	15.5	2	
51	18	20.69	85.5	17.7	2	
59	19	20.41	74.1	15.1	2	
	20	20.49	70 5	16.3	2	
48	20	20.48	79.5	10.5	4	
48	20 1002 MB	20.48	79.5	10.5		
xtracts recei	1002 MB	20.31				
xtracts rece Client I.D.	1002 MB ived 10/15/9' CAS #	20.31 7 Sample Wt (g)	% Solids	Dry Wt (g)	Final Extract	Vol (mL)
Extracts recent Client I.D. 61	1002 MB ived 10/15/97 CAS # 6874-21	20.31 7 Sample Wt (g) 20.56	% Solids 78.0	Dry Wt (g) 16.0	Final Extract	Vol (mL)
Extracts receiption of the second sec	1002 MB ived 10/15/9' CAS # 6874-21 22	20.31 7 Sample Wt (g) 20.56 20.83	% Solids 78.0 70.4	Dry Wt (g) 16.0 14.7	Final Extract 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58	1002 MB ived 10/15/9 ² CAS # 6874-21 22 23	20.31 7 Sample Wt (g) 20.56 20.83 20.21	% Solids 78.0 70.4 73.4	Dry Wt (g) 16.0 14.7 14.8	Final Extract 2 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58 52	1002 MB ived 10/15/9° CAS # 6874-21 22 23 24	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16	% Solids 78.0 70.4 73.4 82.9	Dry Wt (g) 16.0 14.7 14.8 16.7	Final Extract 2 2 2 2 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58 52 40	1002 MB ived 10/15/9" CAS # 6874-21 22 23 24 25	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56	% Solids 78.0 70.4 73.4 82.9 68.8	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58 52 40 40 46	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63	% Solids 78.0 70.4 73.4 82.9 68.8 82.0	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recent Client I.D. 61 60 58 52 40 46 57	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26 27	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 40 46 57 49	1002 MB ived 10/15/9° CAS # 6874-21 22 23 24 25 26 27 28	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts received Client I.D. 61 60 58 52 40 46 57 49 47	1002 MB ived 10/15/9" CAS # 6874-21 22 23 24 25 26 27 28 29	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58 52 40 46 57 49 47 45	1002 MB ived 10/15/9" CAS # 6874-21 22 23 24 25 26 27 28 29 30	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58 52 40 46 57 49 47 45 44	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26 27 28 29 30 31	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17 20.50	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17 20.50 20.49	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41	1002 MB ived 10/15/9° CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 34	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.17 20.17 20.50 20.49 20.86	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 15.4	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41 39	1002 MB ived 10/15/9 ⁷ CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.74 20.17 20.50 20.49 20.86 20.61	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0 79.9	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 15.4 16.5	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts receiption Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41 39 33	1002 MB ived 10/15/9 ⁷ CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17 20.50 20.49 20.86 20.61 20.40	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0 79.9 51.1	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 16.1 15.4 16.5 10.4	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41 39 33 32	1002 MB ived 10/15/9 ⁷ CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 31 32 33 34 35 36 37	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17 20.50 20.49 20.86 20.61 20.40 20.24	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0 79.9 51.1 47.4	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 16.1 15.0 16.4 16.5 10.4 9.6	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41 39 33 32 25	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17 20.50 20.49 20.86 20.61 20.40 20.24 20.82	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0 79.9 51.1 47.4 42.8	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 16.1 15.4 16.5 10.4 9.6 8.9	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41 39 33 32 25 22	1002 MB ived 10/15/9° CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.17 20.17 20.50 20.49 20.86 20.61 20.40 20.24 20.82 20.31	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0 79.9 51.1 47.4 42.8 69.8	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 16.1 15.0 15.4 16.5 10.4 9.6 8.9 14.2	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)
Extracts recer Client I.D. 61 60 58 52 40 46 57 49 47 45 44 43 42 41 39 33 32 25	1002 MB ived 10/15/9' CAS # 6874-21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	20.31 7 Sample Wt (g) 20.56 20.83 20.21 20.16 20.56 20.63 20.58 20.36 20.74 20.14 20.17 20.50 20.49 20.86 20.61 20.40 20.24 20.82	% Solids 78.0 70.4 73.4 82.9 68.8 82.0 32.4 77.5 75.8 76.8 74.2 78.3 73.3 74.0 79.9 51.1 47.4 42.8	Dry Wt (g) 16.0 14.7 14.8 16.7 14.1 16.9 6.7 15.8 15.7 15.5 15.0 16.1 15.0 16.1 15.4 16.5 10.4 9.6 8.9	Final Extract 2 2 2 2 2 2 2 2 2 2 2 2 2	Vol (mL)

Extracts rec	eived 10/23/9	7				
Client I.D.	1	Sample Wt (g)	% Solids	Dry Wt (g)	Final Extract	Vol (mI)
24		20.31	52.9	10.7	2	
24		20.56	41.1	8.5	2	
17		20.30	82.2	17.0	2	
16		20.77	71.1	14.8	2	
10		20.77	69.8	14.2	2	
12		20.37	59.4	14.2	2	
20		20.88	54.9	11.5	2	
18		20.69	74.8	15.5	2	
5		20.20	78.7	15.9	2	
3		20.20	52.3	10.7	2	
7		20.56	58.3	12.0	2	
8		20.57	55.7	11.5	2	
6		20.57	74.0	11.5	2	
3		20.38	32.7	6.8	2	
2	55	20.75	68.9	14.4	2	
2	56	20.80	38.1	7.9	2	
14		20.82	80.6	16.8	2	
14	58	20.32	76.9	15.6	2	
9	59	20.32	81.3	15.0	2	
10	60	20.13	54.3	11.0	2	
10	61	20.21	75.8	15.3	2	
13	62	20.73	46.6	9.7	2	
	1018MB	20.13				
	1018MB	20.83				
	10101111	20.05				
extracts rece	vived 11/1/97					
Client I.D.	CAS #	Sample Wt (g)	% Solids	Dry Wt (g)	Final Extract	Vol (mL)
26	K7531-1	20.3	41.9	8.5	2	
27	2	20.6	57.6	11.9	2	
28	3	20.9	64.1	13.4	2	
30	4	20.2	43.2	8.7	2	
29	5	20.2	51.8	10.8	2	
91	6	20.7	35.4	7.3	2	
92	7	20.1	24.7	5.0	2	A 71 71 71 71 71 71 71 71 71 71 71 71 71
34	8	20.7	56.1	11.6	2	
38	9	20.2	62.8	11.0	2	
37	10	20.2	54.2	11.2	2	
35	10	20.2	78.1	15.8	2	
31	12	20.8	60.2	12.5	2	
88	12	20.6	39.2	8.1	2	
89	13	20.9	14.3	3.0	2	
90	15	20.2	30.8	6.2	2	
36	16	20.2	47.9	10.0	2	
84	10	20.1	39.3	7.9	2	
	18	20.4	29.4	6.0	2	
85 1				0.0	<u>ل</u>	
85 87	18	20.8	45.3	9.4	2	

P450 RGS Ana	alysis of N	OAA/D	elaware	Bay Ext	racts					
October 19-20, 19	997	RLU1	RLU2	RLU3	Mean		CV%	FOLD		
DMSO	10 uL	. 0.090	0.097	0.079	0.089	0.009	0 10.2]	L	
						TCDD	/DMSO	138.2	2	
DCM	2 uL	. 0.124	0.129)	0.127	0.004	2.8]		
TCDD	l ng/mL	, 12.173	12.005	12.573	12.250	0.292	2.4	96.5	5	
Applied 10 uL of	samples							Dry Wt.	[a]P Ec	TEO
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)	1	ng/g di
K6874-1	0.099									
2	0.216									
3	0.170									
4	0.108	0.105	0.111	0.108	0.003	2.8		16.6		
					ave	5.2				
October 20-21, 19	97	RLU1	RLU2	RLU3	Mean	St.Dev	CV%	FOLD		
DMSO	• 10 uL	0.066	0.074	0.070	0.070	0.004	5.7	1		
						TCDD	/DMSO	113.8		
DCM	5 uL	0.096	0.101	0.088	0.095	0.004	3.7	1		
TCDD	1 ng/mL	8.047	8.197	7.655	7.966	0.280	3.5	83.9		
Applied 10 uL of a	samples							Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dr
K6874-5	0.142	0.160	0.151	0.151	0.009	6.0	2.2	16.4		0.03
6	0.270	0.301	0.319	0.297	0.025	8.4	4.2	14.3	0.99	0.00
7	0.140	0.150	0.152	0.147		4.4	2.1	16.6	0.42	0.03
8	0.122	0.138	0.127	0.129		6.3	1.8	16.5		0.02
9	0.149		0.155		0.003	2.0	2.2	16.8		0.03
10	0.228	0.241	0.246			3.9	3.4	16.2		0.04
11	0.108	0.114	0.127	0.116	0.010	8.3	1.7	17.3	0.32	0.02
						5.6				
Detal an 22 24 10	07	DITI		DI LIO	2.6	a , b	CT TO /			
Detober 23-24, 199			RLU2			St.Dev		FOLD		
DMSO	10 uL	0.057	0.061	0.064	0.061	0.004	5.8	1		
	- T	0.007	0.000				DMSO	127.5		
DCM	5 uL	0.095	0.092	0.079	0.089	0.002	2.4	1		
TCDD	1 ng/mL	7.032	7.611	8.558	7.734	0.770	10.0	86.9		
· · · · · · · · · · · · · · · · · · ·	300 ng/mL	0.945	1.082	1.026	1.018	0.069	6.8	11.4		
Applied 10 uL of s			/ * >*	D						
amples #15 and #								Dry Wt.	[a]P Eq	
Sample I.D. 6874-12	RLU1 0.907			Mean	St.Dev.		FOLD	(g)	ug/g dry	
13	0.907	0.713	0.730	0.783	0.107	13.7	12.8	14.2	3.02	0.18
	0.778	0.792	0.729	0.766	0.033	4.3	12.6 11.8	15.1 14.4	2.78 2.73	0.17
141										
14	0 154	0 2011	() 1651	0 1721	0 0251	14 21		1	11 6.71	1,1,7
14 15 16	0.154	0.201	0.165	0.173	0.025	14.2 5.3	2.8 12.3	15.2 13.9	0.62	0.04

Recorded By <u>Unnfn</u> Jones (DD) Date 1/9/98

Reviewed By U Date 1/12/

1

P450 RGS Data for Delaware Bay Study

Applied 10 uL of	1							Dry Wt.	[a]P Ec	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev	. CV%	FOLD	(g)	ug/g dry	ng/g dr
18			0.069	0.070				17.7	0.22	0.0
19			0.615						2.34	0.1
20		1	0.133							
21		0.395	and the second se							
22		0.471	0.471							
23		0.461	0.395		1		7.4			
24			1				2.9			
25		1.896	1.733		0.117				7.20	0.4
spike 15		0.810	0.901		0.065					
spike 25	2.539	2.493	2.357	2.463	0.095		40.4			
100						7.4				
0 . 1 . 07 00 10		DT T T	DITE	DITA		a	AT 19			
October 27-28, 19			RLU2	RLU3	Mean	St.Dev		FOLD		
DMSO	10 uL	0.059	0.063	0.054	0.059		7.7			
						TCDD	/DMSO	125.3		
DCM	2 uL	0.078	0.078	0.074	0.077	0.002	3.0	1		
TCDD	1 ng/mL	7.304	7.006	7.751	7.354	0.375	5.1	95.5		
Applied 10 uL of	samples							Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dr
6874-26	0.356	0.361	0.351	0.356	0.005	1.4	6.0	16.9	1.19	0.0
27	0.417	0.417	0.491	0.442	0.043	9.7	7.5	6.7	3.74	0.22
28	0.090	0.096	0.091	0.092	0.003	3.5	1.6	15.8	0.33	0.02
29	0.187	0.205	0.176	0.189	0.015	7.7	3.2	15.7	0.68	0.04
30	0.274	0.286	0.296	0.285	0.011	3.9	4.8	15.5	1.04	0.00
31	0.856	0.925	0.902	0.894	0.035	3.9	15.2	15.0	3.38	0.20
						5.0				
October 30-31, 19	97	RLU1	RLU2	RLU3	Mean	St.Dev	CV%	FOLD		
DMSO	10 uL	0.084	0.093	0.088	0.088	0.005	5.1	1		
						TCDD/		117.4		
DCM	5 uL	0.117	0.131	0.102				117.4		
TCDD	1 ng/mL	9.952	10.391	10.769		0.409	3.9	88.6		
	300 ng/mL	1.661	1.792	1.695	1.716	0.068	4.0	14.7		
Applied 10 uL of s	samples									
ample #35 spiked	with 300 ng	/mL B[a]	P					Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	
6874-32	0.603	0.663	0.588	0.618	0.040	6.4	7.0	16.1	1.46	0.09
33	1.592	1.789	1.579	1.653	0.118	7.1	18.8	15.0	4.17	0.25
34	0.693	0.789	0.726	0.736	0.049	6.6	8.4	15.4	1.81	0.11
35	0.411	0.561	0.437	0.470	0.080	17.1	5.3	16.5	1.08	0.06
36	0.454	0.507	0.469	0.477	0.027	5.7	5.4	10.4	1.73	0.10
37	0.296	0.338	0.356	0.330	0.031	9.3	3.8	9.6	1.30	0.08
38	4.447	5.078	4.876	4.800	0.322	6.7	54.5	8.9	20.41	1.22
39	6.017	6.699	5.603	6.106	0.553	9.1	69.4	14.2	16.32	0.98
40	3.809	4.601	4.090	4.167	0.402	9.6	47.3	8.4	18.84	1.13
41	2.829	3.757	4.082	3.556	0.650	18.3	40.4	10.7	12.54	0.75

Recorded By_ Date__/9

Reviewed By Date___ 712

Applied 10 uL of	1							Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev		FOLD	(g)		ng/g dr
42									7.93	0.48
spike #35	1.424	1.357	1.112	1.298	0.164	12.7				
November 2.4.10	07	DITI	DI UD	DI II2	Moon			FOLD		
November 3-4, 19	1	RLU1	RLU2	RLU3	Mean	St.Dev				
DMSO	10 uL	. 0.060	0.057	0.054	0.057	1	1			
DCM	5 uL	0.086	0.091	0.071	0.083	1	/DMSO 4.3			
TCDD										
	1 ng/mL		<u> </u>							
	300 ng/mL	, 1.053	1.058	1.014	1.042	0.024	2.3	12.6		
Applied 10 uL of			 JD					DIV	(ID F	
sample #45 spiked			1	2.6		01.10/	TOLD	Dry Wt.		
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	+	FOLD	(g)	ug/g dry	
6874-43	6.981		7.310		0.805					1.57
44	8.963				1.612			14.8		2.15
45	0.495			0.573	0.072			14.2		0.14
46	6.685		7.907	7.602	0.809			12.1	36.74	2.20
47	9.398		9.634	9.749	0.420			11.5		2.98
48	6.393		5.180	6.032	0.741	12.3	105.8	15.5		1.37
49	0.163		0.228	0.195	0.033	16.6	3.4	15.9		0.04
50	10.219		7.993	9.784	1.618	16.5		10.7	53.63	3.22
51	9.481		10.019	9.833	0.305		172.5	12.0	47.97	2.88
52	7.786		9.359	8.683	0.809	9.3	152.3	11.5	44.32	2.66
53	6.217		6.952	6.503	0.394	6.1	114.1	15.2	24.97	1.50
54	4.082		4.367	4.388	0.317	7.2	77.0	6.8	37.86	2.27
55	8.216		8.685	8.582	0.327	3.8	150.6	14.4	34.92	2.10
56	5.034		5.045	5.210	0.295	5.7	91.4	7.9	38.41	2.30
57	5.583		5.121	5.146	0.425	8.3	90.3	16.8	17.95	1.08
Spike #45	0.856	0.910	1.207	0.991	0.189	19.1	17.4			
						10.2				
	4									
REDO all samp									lute 1:10)
November 6-7, 199						St.Dev	CV%	FOLD		
DMSO	10 uL	0.099	0.102	0.096	0.099	0.003	3.0	1		
						TCDD/	DMSO	112.7		
DCM	5 uL	0.117			0.117			1		
TCDD	1 ng/mL	11.483	11.395	10.598	11.159	0.488	4.4	95.4		
Applied 10 uL of s	amples dilu	ted 1:10								
								Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry
6874-43 (1:10)	3.060	3.236		3.148	0.124	4.0	31.8	17.0	62.3	3.7
44 (1:10)	5.134	6.320		5.727	0.839	14.6	57.8	14.8	130.6	7.8

Recorded By 90 Date 1/9/98

Reviewed By 98

P450 RGS Data for Delaware Bay Study

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.5 1.0 2.8 8.8 3.5 3.6 2.9 5.0 0.2 0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0 2.8 8.8 3.5 3.6 2.9 5.0 0.2 0.3
48 (1:10) 1.947 2.407 2.177 0.325 14.9 22.0 15.5 47.4 $50 (1:10)$ 10.096 9.741 9.9185 0.251 2.5 100.2 10.7 313.0 11 $51 (1:10)$ 7.782 8.275 8.0285 0.349 4.3 81.1 12.0 225.5 11 $52 (1:10)$ 7.409 8.012 7.7105 0.426 5.5 77.9 11.5 226.6 11 $53 (1:10)$ 2.199 2.106 2.1525 0.066 3.1 21.7 15.2 47.6 $55 (1:10)$ 3.456 3.654 3.555 0.14 3.9 35.9 14.4 83.3 58 1.626 1.448 1.693 1.589 0.127 8.0 16.1 15.6 3.4 59 1.359 3.172 1.720 2.084 0.960 46.1 21.0 16.4 4.3 60 6.580 9.119 12.040 9.246 2.732 29.5 93.4 11.0 28.4 need to redo # 59 and 60 ; $CV > 20%$ $V > 0.067$ 0.002 4.0 1 $V > 0.000$ 1.0 1.0 1.0 1.0 $DMSO$ 10 uL 0.056 0.060 0.056 0.057 0.002 4.0 1 1.0 $DMSO$ 10 uL 0.082 0.077 0.067 0.075 0.004 4.7 1 1.0 DCM 5 uL 0.082 0.077 0.067 <td>2.8 8.8 3.5 3.6 2.9 5.0 0.2 0.3</td>	2.8 8.8 3.5 3.6 2.9 5.0 0.2 0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.8 3.5 3.6 2.9 5.0 0.2 0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.5 3.6 2.9 5.0 0.2 0.3
52 (1:10)7.4098.0127.71050.4265.577.911.5226.61 $53 (1:10)$ 2.1992.1062.15250.0663.121.715.247.6 $55 (1:10)$ 3.4563.6543.5550.143.935.914.483.3 58 1.6261.4481.6931.5890.1278.016.115.63.4 59 1.3593.1721.7202.0840.96046.121.016.44.3 60 6.5809.11912.0409.2462.73229.593.411.028.4need to redo # 59 and 60 ; CV > 20% </td <td>3.6 2.9 5.0 0.2 0.3</td>	3.6 2.9 5.0 0.2 0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.9 5.0 0.2 0.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.0 0.2 0.3
58 1.626 1.448 1.693 1.589 0.127 8.0 16.1 15.6 3.4 59 1.359 3.172 1.720 2.084 0.960 46.1 21.0 16.4 4.3 60 6.580 9.119 12.040 9.246 2.732 29.5 93.4 11.0 28.4 need to redo # 59 and 60 ; CV > 20% <td>0.2 0.3</td>	0.2 0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.3
60 6.580 9.119 12.040 9.246 2.732 29.5 93.4 11.0 28.4 need to redo # 59 and 60 ; $CV > 20\%$ </td <td></td>	
need to redo # 59 and 60 ; $CV > 20\%$ Image: square s	
November 10-11, 1997 RLU1 RLU2 RLU3 Mean St.Dev CV% FOLD DMSO 10 uL 0.056 0.060 0.056 0.057 0.002 4.0 1 DMSO 10 uL 0.056 0.060 0.057 0.002 4.0 1 DCM 5 uL 0.082 0.077 0.067 0.075 0.004 4.7 1 TCDD 1 ng/mL 7.206 7.388 7.098 7.231 0.147 2.0 96.4 B[a]P 300 ng/mL 0.833 0.991 1.137 0.987 0.152 15.4 13.2 Applied 10 uL of samples	
DMSO 10 uL 0.056 0.060 0.056 0.057 0.002 4.0 1 DCM 5 uL 0.082 0.077 0.067 0.075 0.004 4.7 1 DCM 5 uL 0.082 0.077 0.067 0.075 0.004 4.7 1 TCDD 1 ng/mL 7.206 7.388 7.098 7.231 0.147 2.0 96.4 B[a]P 300 ng/mL 0.833 0.991 1.137 0.987 0.152 15.4 13.2 Applied 10 uL of samples Image: Mark Image:	
Image: Markow	
DCM 5 uL 0.082 0.077 0.067 0.075 0.004 4.7 1 TCDD 1 ng/mL 7.206 7.388 7.098 7.231 0.147 2.0 96.4 B[a]P 300 ng/mL 0.833 0.991 1.137 0.987 0.152 15.4 13.2 Applied 10 uL of samples	
DCM 5 uL 0.082 0.077 0.067 0.075 0.004 4.7 1 TCDD 1 ng/mL 7.206 7.388 7.098 7.231 0.147 2.0 96.4 B[a]P 300 ng/mL 0.833 0.991 1.137 0.987 0.152 15.4 13.2 Applied 10 uL of samples	
TCDD 1 ng/mL 7.206 7.388 7.098 7.231 0.147 2.0 96.4 B[a]P 300 ng/mL 0.833 0.991 1.137 0.987 0.152 15.4 13.2 Applied 10 uL of samples	
B[a]P 300 ng/mL 0.833 0.991 1.137 0.987 0.152 15.4 13.2 Applied 10 uL of samples	
Applied 10 uL of samples	
building wood of and when soon Bring plain plain building and the fight building and the source of t	
Sample I.D. RLU1 RLU2 RLU3 Mean St.Dev. CV% FOLD (g) ug/g dry ng/g	dry
	$\frac{diy}{0.5}$
	2.4
	1.7
	3.5
	1.5
	0.5
	0.8
	0.6 5.6
	$\frac{5.0}{1.7}$
	0.9
	0.3
	0.5
	0.3
	0.1
	0.1
	0.4
	6.8
	1.7 0.4
	0.4
	2.9
spike 6874-60 9.133 8.928 10.338 9.466 0.762 8.0 166.1	

Recorded By Date 1/9

Reviewed By______ Date___ VR

Applied 10 uL of	samples							Dry Wt.	[a]P Ec	TEQ
Sample I.D.		RLU2	RLU3	Mean	St.Dev.		FOLD	(g)	ug/g dry	ng/g dr
spike7531-10	2.687	2.791	2.094	2.524	0.376					
						9.5				
Redo 60, 61, 6	2, 5, 14 be	ecause fo	pld > 10							
November 13-14,	1997	RLU1	RLU2	RLU3	Mean	St.Dev	CV%	FOLD		
DMSO	10 uL	, 0.078	0.079	0.080	0.079	0.001	1.3	1		
						TCDD	/DMSO	107.5		
DCM	5 uL	, 0.096	0.101	0.099	0.099	0.004	3.6	1		
TCDD	1 ng/mL	8.425	8.533	8.523	8.494	0.060	0.7	85.8		
B[a]P	300 ng/mL	1.823	2.216	1.831	1.957	0.225	11.5	19.8		
Applied 10 uL of	samples									
samples #6874-60	-62 and #75	31-5 and	14 dilute	d 1:10 wit	h DMSC): samp	le #7531	-5 also di	luted 1:50)
sample 7531-19 sj	piked w/ 300) ng/mL H	B[a]P					Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry
874-60 (dil 1:10)	3.080	2.951	2.951	2.994	0.074	2.5	37.9	11.0	115.1	6.9
874-61 (dil 1:10)	21.736	24.674	20.462	22.291	2.160	9.7	282.2	15.3	613.0	36.8
874-62 (dil 1:10)	8.116	8.053	7.503	7.891	0.337	4.3	99.9	9.7	344.7	20.7
7531-5 (dil 1:10)	10.060	10.052	9.549	9.887	0.293	3.0	125.2	10.8	385.3	23.1
7531-5 (dil 1:50)	1.441	1.672	1.481	1.531	0.123	8.1	19.4	10.8	298.4	17.9
531-14 (dil 1:10)	2.860	2.798	2.775	2.811	0.044	1.6	35.6	3.0	396.9	23.8
7531-19	0.765	0.855	0.912	0.844	0.074	8.8	10.7	9.4	3.8	0.2
7531-19 (1:10)	0.194	0.209	0.217	0.207	0.012	5.6	2.6	9.4	9.3	0.6
spike 7531-19	1.370	L	2.205	1.905	0.464	24.4	24.1			
need to redo #6	51 at 1:100) . 				7.5				
P450 RGS Ana	lysis of N(DAA/De	laware I	Bay Extr	acts: tii	ne cou	rse exp).		
November 26-27,	1997									
16 hours		RLU1	RLU2	RLU3	Mean	St.Dev	CV%	FOLD		,
DMSO	10 uL	0.089	0.096	0.097	0.094	0.004	4.6	1		
							DMSO	97.5		
DCM	2 uL	0.122	0.120	0.118	0.120	0.001	1.2	1		
TCDD	1 ng/mL	9.247	9.256	8.995	9.166	0.148	1.2	76.4		
Applied 10 uL of s				2.770			1.0	Dry Wt.	[a]P Eq	TEO
Sample I.D.			RLU3	Mean	St.Dev.	CV%	FOLD	-	ug/g dry	
687461 (dil 1:10	6.563	7.229	6.767	6.853	0.341	5.0	72.9	15.3	1584.0	95.0
	0.505	1.229	0.707	0.055	0.541	5.0	12.5	15.5	1304.0	95.0
6 hours				יז זמ	Maar		0170/	FOLD		
						St.Dev		FOLD		
DMSO	10 uL	0.098	0.108	0.107	0.104	0.006	5.3	1		
						TCDD/		30.2		
DCM	2 uL	0.123	0.099	0.098	0.107	0.017	15.9	1		

Recorded By Date 1/9/78

Reviewed By Date___

Applied 10 uL of	samples		1	1				Dry Wt.	[a]P Eq	TEO
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)		ng/g dry
TCDD	1 ng/mL									
Applied 10 uL of				1				Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)		ng/g dry
6874-61 (dil 1:10)	3.102	3.094	2.993	3.063	0.061	2.0	29.5	15.3	639.9	38.4
January 1-2, 1998										
16 hours		RLU1	RLU2	Mean	St.Dev.	CV%	FOLD			
DMSO	10 uL	0.056	0.054	0.055	0.001	2.6	1			
					TCDD/	DMSO	170.8		-	
DCM	2 uL	0.069	0.068	0.069	0.001	1.0	1			
TCDD	l ng/mL	9.486	9.304	9.395	0.129	1.4	136.2			
Applied 10 uL of	samples (all	diluted 1	:10)				Dry Wt	B[a]P Eq	TEQ	
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry	
6874-43 (1:10)	2.496	2.697	2.597	0.142	5.5	47.2	17.0	92.5	5.5	
44 (1:10)	4.675	5.416	5.046	0.524	10.4	91.7	14.8	207.1	12.4	
46 (1:10)	3.881	3.675	3.778	0.146	3.9	68.7	12.1	189.2	11.4	
47 (1:10)	5.823	5.893	5.858	0.049	0.8	106.5	11.5	309.7	18.6	
55 (1:10)	2.471	2.710	2.591	0.169	6.5	47.1	14.4	109.2	6.6	
60 (dil 1:10)	2.108	2.290	2.199	0.129	5.9	40.0	11.0	121.4	7.3	
6 hours		RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	· · · · · · · · · · · · · · · · · · ·		
DMSO	10 uL	0.085	0.087	0.086	0.001	1.6	1			
					TCDD/	DMSO	63.6			
DCM	2 uL	0.085	0.092	0.089	0.005	5.6	1			
TCDD	1 ng/mL	4.727	6.210	5.469	1.049	19.2	61.4			
Applied 10 uL of s	ample 6874	-61 dilute	d 1:100				Dry Wt	B[a]P Eq	TEQ	
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry	
6874-43 (1:10)	5.820	6.459	6.140	0.452	7.4	71.4	17.0	139.9	8.4	
44 (1:10)	6.147	7.005	6.576	0.607	9.2	76.5	14.8	172.6	10.4	
46 (1:10)	6.828	6.183	6,506	0.456	7.0	75.6	12.1	208.4	12.5	
47 (1:10)	5.837	6.308	6.073	0.333	5.5	70.6	11.5	205.3	12.3	
55 (1:10)	6.260	6.691	6.476	0.305	4.7	75.3	14.4	174.6	10.5	
60 (dil 1:10)	6.165	6.093	6.129	0.051	0.8	71.3	11.0	216.5	13.0	
January 4-5, 1998										
16 hours		RLU1	RLU2	Mean	St.Dev.	CV%	FOLD		:	
DMSO	10 uL	0.046	0.048	0.047	0.001	3.0	1			
					TCDD/I		219.3			
DCM	2 uL	0.067	0.076	0.072	0.006	8.9	1			
	1 ng/mL	9.955	10.663				143.2			

Recorded By $\frac{1}{9}$ Date $\frac{1}{9}$

Reviewed By M Date 1/12

P450 RGS Data for Delaware Bay Study

Applied 10 uL of	samples						1	Dry Wt.	[a]P Eq	TEO
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)		ng/g dry
Applied 10 uL of			1					B[a]P Eq		
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry	
6874-43 (1:100)	0.419	0.426	0.423	0.005	1.2	9.0	1	176.1	10.6	
44 (1:100)	0.545	0.652	0.599	0.076	12.6	12.7	14.8	287.4	17.2	
46 (1:100)	0.528	0.455	0.492	0.052	10.5	10.5	12.1	288.1	17.3	
47 (1:100)	0.616	0.632	0.624	0.011	1.8	13.3	11.5	386.1	23.2	
50 (1:100)	0.892	1.003	0.948	0.078	8.3	20.2	10.7	629.8	37.8	
51 (1:100)	0.820	0.824	0.822	0.003	0.3	17.5	12.0	486.4	29.2	
52 (1:100)	0.710	0.696	0.703	0.010	1.4	15.0	11.5	435.2	26.1	
55 (1:100)	0.337	0.400	0.369	0.045	12.1	7.8	14.4	181.8	10.9	
60 (1:100)	0.386	0.318	0.352	0.048	13.7	7.5	11.0	227.5	13.6	
					0. 5	CT TO (TOTE			
6 hours		RLU1	RLU2	Mean	St.Dev.		FOLD			
DMSO	10 uL	0.073	0.066	0.070		7.1	1			
					TCDD/	I	79.9			
DCM	2 uL	0.085			0.016	16.9	1			
TCDD	1 ng/mL	5.602		5.551	0.072	1.3	57.2	`		
Applied 10 uL of s			1				· · · · · · · · · · · · · · · · · · ·	B[a]P Eq		
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry		
6874-43 (1:100)	4.329	4.515		0.132	3.0	63.2	17.0		<u> </u>	
44 (1:100)	4.243	4.911	4.577	0.472	10.3	65.4	14.8	1475.9		
46 (1:100)	4.969	4.231	4.600	0.522	11.3	65.7	12.1	1810.3	108.6	
47 (1:100)	4.664	4.923		0.183	3.8	68.5	11.5	1991.3	119.5	
50 (1:100)	5.065	5.900	5.483	0.590	10.8	78.3	10.7	2447.0	146.8	
51 (1:100)	5.539	5.011	5.275	0.373	7.1	75.4	12.0	2095.6	125.7	
52 (1:100)	4.999	5.137	5.068	0.098	1.9	72.4	11.5	2106.3	126.4	
55 (1:100)	4.240	4.431	4.336	0.135	3.1	61.9	14.4	1436.4	86.2	
60 (1:100)	4.341	3.710	4.026	0.446	11.1	57.5	11.0	1746.8	104.8	
January 5-6, 1998										
16 hours		RLU1	RLU2	Mean	St.Dev.	CV%	FOLD			
DMSO	10 uL	0.054	0.044	0.049	0.007	14.4	1			
Diribe	10 00	0.054	0.011		TCDD/		195.3			
DCM	2 uL	0.058	0.074	0.066	0.011	17.1	1			······
TCDD	1 ng/mL	9.448	9.688	9.568	0.170	1.8	145.0			
Applied 10 uL of s				2,200				B[a]P Eq	TEO	
Sample I.D.				St.Dev.	CV%	FOLD	(g)	ug/g dry		
6874-61 (1:100)	4.94	4.996	4.968	0.040	0.8		15.3	2202.8	132.2	
62 (1:100)	0.615	0.754	0.685	0.098	14.4	14.0	9.7	482.0	28.9	
7531-5 (1:100)	0.795	0.759	0.777	0.025	3.3	15.9	10.8	488.2	29.3	

Recorded B Date ____/

Reviewed By Date_

Applied 10 uL of s	samples]						Dry Wt.	[a]P Eq	TEQ
Sample I.D.	RLU1	RLU2	RLU3	Mean	St.Dev.	CV%	FOLD	(g)		ng/g dry
14 (1:100)	0.277		0.296	0.026			3.0			<u> </u>
6 hours		RLU1	RLU2	Mean	St.Dev.	CV%	FOLD			
DMSO	10 uL	0.073	0.069	0.071	0.003	4.0	1			
					TCDD/	DMSO	69.5			
DCM	2 uL	0.093	0.108	0.101	0.011	10.6	1			
TCDD	l ng/mL	4.659	5.205	4.932	0.386	7.8	48.8			
Applied 10 uL of s	amples (all	diluted 1	:100)				Dry Wt	B[a]P Eq	TEQ	
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry	
6874-61 (1:100)	5.051	5.319	5.185	0.190	3.7		15.3			
62 (1:100)	4.504								138.2	
7531-5 (1:100)	4.471	4.205		0.188						
14 (1:100)	2.715	2.809	2.762	0.066	2.4	38.9	3.0	4338.7	260.3	
January 8-9, 1998										
16 hours		RLU1	RLU2	Mean	St.Dev.	CV%	FOLD			
DMSO	10 uL	0.061	0.059	0.060	0.001	2.4	1			
					TCDD/	DMSO	173.9		· .	
DCM	2 uL	0.070	0.084	0.077	0.010	12.9	1			
TCDD	1 ng/mL	10.384	10.487	10.436	0.073	0.7	135.5			
Applied 10 uL of s	amples (all	diluted 1:	300)				Dry Wt	B[a]P Eq	TEQ	
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry	
6874-50 (1:300)	0.404	0.470	0.437	0.047	10.7	7.3	10.7	682.7	41.0	
6874-61 (1:300)	2.267	2.443	2.355	0.124	5.3	39.3	15.3	2558.3	153.5	
6 hours		RLU1	RLU2	Mean	St.Dev.		FOLD			
DMSO	10 uL	0.085	0.078	0.082	0.005	6.1	. 1			
					TCDD/	DMSO	68.7			
DCM	2 uL	0.117	0.119	0.118	0.001	1.2	1			
TCDD	1 ng/mL	5.687	5.507	5.597	0.127	2.3	47.4			
Applied 10 uL of s	amples (all	diluted 1:	300)				Dry Wt	B[a]P Eq	TEQ	
Sample I.D.	RLU1	RLU2	Mean	St.Dev.	CV%	FOLD	(g)	ug/g dry	ng/g dry	
6874-50 (1:300)	4.480	4.732	4.606	0.178	3.9	56.2	10.7	5264.8	315.9	
6874-61 (1:300)	5.517	5.100	5.309	0.295	5.6	64.7	15.3	4219.7	253.2	

Recorded B Date__/

Reviewed B Date 1/9

								Recovery
Date	CAS ID #	NOAA#	Toxicant	Spike conc	Sample Fold	Tox.Fold	Spike Fold	(% additive
10/24/97	6874-15	54	B[a]P	300 ng/mL	2.8	11.4	13.6	95
10/24/97	6874-25	40	B[a]P	300 ng/mL	30.5	11.4	40.4	96
10/31/97	6874-35	39	B[a]P	300 ng/mL	5.3	14.7	14.7	74
11/4/97	6874-45	39	B[a]P	300 ng/mL	10.1	12.6	17.4	77
11/11/97	6874-60	10*	B[a]P	300 ng/mL	131.4	13.2	166.1	115
11/11/97	7531-10	37	B[a]P	300 ng/mL	17.4	13.2	44.3	145
11/14/97	7531-19	87	B[a]P	300 ng/mL	10.7	19.8	24.1	79

QA/QC Data

Quality Co	ontrol of	NOAA:	Bioeffec	ts RGS	Testing-D	elaware Bay		
	CV%	CV%	CV%	CV%	mean CV%			
Date	TCDD	DCM	DMSO	B[a]P	of Samples	TCDD/DCM	TCDD/DMSO	B[a]P Fold
10/20/97	2	3	10	NT	5	96.5	138.2	NT
10/21/97	4	4	6	NT	6	83.9	113.8	NT
10/24/97	10	2	6	7	7	86.9	127.5	11.4
10/28/97	5	3	8	NT	5	125.3	95.5	NT
10/31/97	4	8	5	4	10	88.6	117.4	14.7
11/4/97	3	4	5	2	10	90.2	131.3	12.6
11/11/97	2	5	4	15	9	96.4	126.1	13.2
11/14/97	1	4	1	11	8	85.8	107.5	19.8
11/27/97	2	1	5	NT	5	76.4	97.5	NT
					Mean	92.2	117.2	14.3
					Std.Dev.	13.9	15.0	3.3
					CV (%)	15.0	12.8	22.8

