Coupling Ecology and GIS Technology to Evaluate the Efficacy of Marine Protected Areas in Hawaii

Alan M. Friedlander¹, Eric Brown^{2,3} Mark Monaco⁴ and Athline Clark²

¹ NOAA/NOS/National Centers for Coastal and Ocean Science/Biogeography Team & The Oceanic Institute, Waimanalo, HI

- ² State of Hawaii, DLNR, Division of Aquatic Resources
- ³ National Park Service, Kalaupapa NHP, Hawaii
- ⁴ NOAA/NOS/National Centers for Coastal and Ocean Science/Biogeography Team, Silver Spring, MD

• Objective: Conduct integrative coral reef ecosystem mapping and monitoring to evaluate MPA effectiveness, define essential fish habitat, and identify biologically relevant MPA boundaries.

I) Background - Integrated Benthic Habitat Mapping and Monitoring
II) Define Reef Fish Habitat Utilization Patterns
III) Evaluate MPA Effectiveness
IV) Design principles for reserves in Hawaii

Imagery for Developing Benthic Habitat Maps

IKONOS – true-color; 4 m pixel

AERIAL PHOTOGRAPHY – true-color; 1.2 m pixel

HYPERSPECTRAL – 72 bands between 350 and 1000 nm; 3 m pixel

NOAA/NOS National Centers for Coastal Ocean Science

South Molokai, Hawaii Coral Reef Ecosystem Habitats

Habitat Types

MMU = 0.4 ha (1 acre)

NOAA/NOS National Centers for Coastal Ocean Science

South Molokai Study Area

- 4. Map Accuracy Analysis
- 5. Assessment Transects- Fish/benthic Community
- 6. Identify Essential Fish Habitat
- 7. Evaluation of Marine Protected Areas

Locations of Hawaii Marine Life Conservation Districts and the University Marine Laboratory Refuge (Moku o Loe)

Marine Life Conservation Districts in Hawaii

Island	Protected area	Acres	Year	Use	Protection
			estab.		from
					fishing
Oahu	Hanauma Bay	101	1967	High	High
	Pupukea	179	1983*	Mod	Mod
	Waikiki	76	1988	High	High
	Moku o Loe	73	1967	Low	High
Hawaii	Kealakekua Bay	315	1969	High	Mod
	Lapakahi	146	1979	Low	Low
	Waialea Bay	35	1985	Low	Low
	Old Kona Airport	217	1992	Mod	Mod
	Wai Opae	84	2000	Mod	High
Lanai	Manele-Hulopoe	309	1976	Mod	Mod
Maui	Molokini Shoal	211	1977	High	High
	Honolua-Mokuleia Bay	45	1978	Mod	High

Friedlander and Brown 2003

* Modified 2003

Using Maps to Support Field Activities

Random stratified design

inside vs. outside MPAs
coral, other hard bottom, macroalgae, sand

Fish Censuses

• 25m x 5m transects

Corresponding habitat metrics

- biotic cover
- abiotic cover
- habitat complexity

Waikiki Benthic Habitats, MPAs, and Sampling Locations (N = 99)

Kilometers

Waikiki MLCD – Est. 1988, 31 Ha

Waikiki-DH FMA Rotational closure since 1978 97 Ha

Colonized Hardbottom Macroalgae Sand Uncolonized Hardbottom Unknown 1

Fish biomass (t ha⁻¹) by individual transects (N=99) for Waikiki including Waikiki MLCD and Waikiki-Diamondhead FMA

Mean biomass (t ha⁻¹) by habitat type and management regime for Waikiki Error bars are standard error of the mean

Fish Biomass (t ha⁻¹) by Habitat among Management Regimes

Factors Influencing Fish Biomass (t ha⁻¹) among all Locations Stepwise multiple regression analysis (hardbottom only) Probability to enter model 0.25, probability to leave 0.10, $R^2 = 0.41$

Comparison of Fish Biomass between MPAs and Open Areas Across Range of Habitat Complexities

Ratio of biomass (t ha⁻¹) inside MPAs vs. outside areas open to fishing Hardbottom habitats only.

Size spectra of Log₁₀ number ha⁻¹ by standardized size class (TL in cm) for all fishes on hardbottom habitats

Mean biomass per transect (t ha⁻¹) by trophic guild and management regime on hardbottom habitats

Trophic composition among major habitat types pooled across all locations

 Highest biomass of apex on colonized hardbottom

- Highest proportion on sand
- Sand important corridor
- Lowest on macroalgae and uncolonized hardbottom

Fish Species Richness

Fish Biomass

Habitat Variables Affecting Fish Assemblage Characteristics in MLCDs

> Results of General Linear Models hardbottom only

Major Conclusions

- Habitat complexity explained much of the variability in fish species richness, biomass, and diversity
- Overall fish biomass was 2.6 times greater in reserves
- Apex predators showed the greatest difference between open and protected areas
- Depth explained most variability in richness and diversity among reserves

 Overall size of the adult fish assemblage larger in the protected areas & larger size classes had greater number of individuals compared with the other management regimes

• Despite their proven success, no-take reserves account for less than 1% of nearshore areas in the main Hawaiian Islands

Design Criteria for Effective MPAs in Hawaii

- Range of habitat complexities
- Full protection from fishing
- Shoreline to deep habitats
- Mosaic of habitats
- Sand corridors
- Low macroalgae cover
- Representative wave exposures

Spatial Management is the Best Solution for Fisheries and Biodiversity in Hawaii

- Conventional fisheries management not well suited for Hawaii or other tropical insular areas
 - Catch/effort restrictions not effective in non-commercial fisheries
 - Closed seasons not effective with non-selective gear
 - Gear restrictions difficult to enforce
 - Size limits (little enforcement, lack of compliance, non-selective gear)
 - Large fish contribute more and higher quality offspring
- High endemism = biodiversity hotspot
- Ecosystem management = spatial management