Marine Debris Program

UAS Debris Detection: Goals, Current and Future Efforts

Peter Murphy NOAA Marine Debris Program Amy Uhrin (MDP), Tim Battista (NOAA NCCOS), Chris Parrish (Oregon State U.)

UAS Workshop - October 20, 2020

Debris Detection Efforts

Satellite Visual + Multispectral Satellite Surveys Synthetic Aperture Radar Aerial Surveys UAS Surveys Surface Surveys Vessel – Shoreline Aircraft 200 – 2000 ft Vessel-Towed Visual IR. etc. Sonar UAS 200 - 1000 ft Visual – Video IR Diver AUV

Debris Detection Goals

- Data
 - Abundance
 - Characterization / Composition
- Purpose
 - Operational prioritization
 - Scientific Evaluation
 - Policy Guidance
 - "_____ type of debris from
 _____ source is present and so…."

Debris Detection Challenges/ Nee

- **1. Encounter Rate** Debris concentration is often unpredictable and variable, particularly at-sea
- 2. Debris Size Most debris is relatively small (<1m in long dimension, often <0.3m)
- **3. Debris Composition** Cannot "tune" approach to a single debris material, color, or shape.
- 4. Debris Visibility Debris is often awash or partially obscured by water, sand or vegetation, reducing target size. Many platforms and sensors are weather dependent.
- 5. Detection v. Identification Noting the presence of "something" versus identifying what the anomaly is
 - Challenge increases as resolution decreases
- 6. Resolution v. Coverage Trade-off between detail of imagery versus coverage of imagery
 - Post-processing is often labor intensive

UAS + MD – Example Project

Rachel Carson Reserve (NC)

- Duke + Rachel Carson Reserve
- Debris detection and prioritization in sensitive habitat
- Northwestern Hawaiian Islands (HI)
 - Debris detection for removal targeting and feasibility
- Pribilof Islands (AK)
 - Shoreline debris quantification
 - Detection & prioritization in sensitive habitat

UAS Workshop - October 20, 2020

Oregon State + NCCOS + MDP Project

DOR OTHER

Question / Problem

- Detection v. Identification v.
 Quantification v. Classification
- Diversity of object / target

Project Goals / Efforts

- 1. Payload evaluation / selection
- 2. Define data acquisition parameters.
- Automate detection & material type classification.
- Develop and implement operationally-efficient workflows & <u>modularly</u> <u>deployable algorithms.</u>
 - **GOAL** = Platform agnostic tools and techniques

Oregon State + NCCOS + MDP Proiect

• Techniques

- Polarimetric Imaging- measurement and interpretation of the polarization state of transverse light waves reflected by object
- Machine Learning Processing Building on existing techniques to automate debris tagging and identification.
- Phases / Actions
 - Data Testing protocols applied to test data sets, lab / controlled tests of sensors
 - Controlled Field Tests Applying techniques to placed debris (Oregon)
 - Validation Field Tests Applying techniques to in-situ debris (Hawaii)

- (1) Aluminum bowl
- (2) Glass mason jar
- (3) Acrylic panel
- (4) Plastic trash bag
- (5) Toothbrush
- (6) Plastic broom handle

Thank You!

Any Questions?

Peter Murphy peter.murphy@noaa.gov marinedebris.noaa.gov

UAS Workshop - October 20, 2020