After the Disaster: Plans for Coral Propagation Activities to Support Restoration of Mesophotic and Deep Benthic Communities Impacted by Deepwater Horizon Oil Spill

Peter Etnoyer, Amanda Demopoulos, Stacey Harter, Randy Clark, Kris Benson

September 13, 2021
Deepwater Horizon Oil Spill

- Tragic incident resulting in deaths of 11 workers in April 2010.
- Largest ocean spill in U.S. history.
- 507 M liters of oil released (3.19 M barrels) into the ocean over 87 days.
- 111,000 sq km: Cumulative extent of surface oil slick—larger than Portugal or Austria.

Image source: US Coast Guard
A Massive Spill, a Massive Response

DWH Natural Resource Damage Assessment:
- Severe injury offshore to sea birds, mammals, fish, and sea fan corals
- Broad contamination of deep-sea sediments (Montagna et al 2013, Reuscher et al 2020)
- Significant declines in mesophotic sea fans 60 - 80 m (Silva et al 2016; Etnoyer et al 2016)
The ‘Open Ocean Trustee Implementation Group’ finalized Restoration Plan in 2019

18 projects selected, totaling ~$226 M to help restore fish, sea turtles, marine mammals and deep-sea coral habitat

OORP2 intends to restore *benthic communities* on deep hard grounds & soft sediments injured by the oil spill*

gulfspillrestoration.noaa.gov/restoration-areas/open-ocean
Mapping, Ground-Truthing, and Predictive Habitat Modeling
Est. Budget: $36M

Habitat Assessment and Evaluation
Est. Budget: $53M

Coral Propagation Technique Development*
Est. Budget: $17M

Active Management & Protection
Est. Budget: $21M

MDBC Projects total $126M over 8 yrs
Coral Propagation Technique Development

A pilot project to *propagate corals* and *deploy artificial substrates*

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY</td>
<td>2021</td>
<td>2022</td>
<td>2023</td>
<td>2024</td>
<td>2025</td>
<td>2026</td>
<td>2027</td>
<td>2028</td>
</tr>
<tr>
<td>Prepare and plan</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build out labs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct fieldwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data inventory and Analysis: Species prioritization

Which species to propagate? How many do we need to compensate?

- Review of DWH literature related to coral impacts, species distribution papers, policy documents
- Drew from 16 papers to develop list of 42 deep coral taxa ‘present’ in areas of injury
- Gathered information on their degree of injury for use in a ranking exercise
Data Inventory and Analysis: Species priority matrix

Which species to propagate?
How many do we need to compensate?

- Ranked species according to these criteria
 - Frequency of injury
 - Frequency of occurrence*
 - Relevance to management
- Ran three trials, each w/ 5 respondents
- Strong consensus on the Top 3, and good consensus on Top 12
- ~619 corals were documented as injured of which 70% are in three taxa
- Totals do not include injury that was not observed, nor injuries at control sites.

<table>
<thead>
<tr>
<th>Species</th>
<th>Average Rank</th>
<th>Injury counts</th>
<th>Frequency of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muricea pendula = H. pendula</td>
<td>1</td>
<td>182</td>
<td>1432</td>
</tr>
<tr>
<td>Swiftia exserta</td>
<td>1</td>
<td>82</td>
<td>1477</td>
</tr>
<tr>
<td>Paramuricea biscaya</td>
<td>1</td>
<td>166</td>
<td>819</td>
</tr>
<tr>
<td>Bebryce spp.</td>
<td>2</td>
<td>76</td>
<td>1402</td>
</tr>
<tr>
<td>Thesea nivea</td>
<td>3</td>
<td>64</td>
<td>509</td>
</tr>
<tr>
<td>Antipathes atlantica</td>
<td>4</td>
<td>24</td>
<td>1150</td>
</tr>
<tr>
<td>Paramuricea sp. B3</td>
<td>4</td>
<td>3</td>
<td>819</td>
</tr>
<tr>
<td>Placogorgia sp.</td>
<td>4</td>
<td>5</td>
<td>771</td>
</tr>
<tr>
<td>Bathypathes cf patula</td>
<td>4</td>
<td>2</td>
<td>135</td>
</tr>
<tr>
<td>Leiopathes glaberrima</td>
<td>4</td>
<td>0</td>
<td>2288</td>
</tr>
<tr>
<td>Callogorgia delta</td>
<td>4</td>
<td>0</td>
<td>908</td>
</tr>
<tr>
<td>Lophelia pertusa</td>
<td>4</td>
<td>0</td>
<td>8564</td>
</tr>
</tbody>
</table>

* # of observations in GoMx since 2010, from https://deepseacoraldata.noaa.gov
Deep water gorgonians in the Gulf of Mexico

Paramuricea spp., temp ~ 4C

Plagocorida, temp ~20 C

Muricea (= Hypnogorgia) pendula

Thesea nivea

Swiftia exserta, temp 18-22 C
Where to access corals for propagation activity?

The known *Paramuricea*

- Using abundance data to identify large aggregations
- Using size class data for demographics
- Using temperature data to inform the laboratory designs

The unknown *Paramuricea*

- Known areas are large and not well explored
- Habitat suitability models are available, will need validation (e.g. Georgian et al, 2021)
- Genetic connectivity studies in progress (e.g., Herrera et al 2019)
Where to access corals for propagation?

AT-357 was mapped by NOAA ship *Okeanos Explorer* in 2009 and 2011.

Other known sites from Doughty, Quattrini, Cordes. 2014 DSR II

High abundance at AT 357 Cordes, E. 2013. Live from a research cruise on RV Nautilus. Blog from Rutledge Marine Lab
Upgrading infrastructure and increasing human capacity to meet these goals:

- Develop methods & techniques for effective enhancement of coral growth and recruitment
- Produce healthy, growing fragments through asexual propagation, and sexual reproduction
- Standardize methods for husbandry across facilities, to share among the planned network and build capacity among partner institutions
Modular Scalable System

- Thermally insulated, 230 gal system
- Allows flexible plumbing configurations in parallel (shown), in L, T, or linear footprint
- Footprint is 5’ x 7’ for configuration shown
- Capacity for temperature range from 4 – 20°C

Specifications:
Volume: 220 (87+87+ 46) gallons
Footprint: 5’ x 7’
Culture area: 2,240 sq. inches
25-40 Mother colonies + 100’s of fragments
2 Chillers (main + back-up), fractionator, biological filtration, chemical filtration, algae reactor, current simulator, Neptune Apex water monitoring, automatic water exchange, alarms
Mesophotic corals arrived June 2021 from Atlantic on PC-21-02 (PIs Stacey Harter & Andy David)

- **USGS Wetlands Aquatic Resources Center in Gainesville, FL**
 - 15 live Swiftia sp., inc 2 Swiftia frags
 - 3 live Muricea sp., inc 3 Muricea frags

- **NOAA Hollings Marine Lab in Charleston, SC**
 - 12 live Swiftia sp.
 - 3 live Muricea sp.

Visible growth at both labs, polyps open and feeding @ 20 C
Our stakeholder engagement strategy is to grow a network of labs, aquaria, study sites, & partners.

- GoMx mesophotic site
- GoMx deep sea site
- W. Atlantic sites
- Many partner opportunities
Thank you!

Please contact our Project Managers for more information

Peter Etnoyer, peter.etnoyer@noaa.gov
Amanda Demopoulos, ademopoulos@usgs.gov
Stacey Harter, stacey.harter@noaa.gov
Kris Benson, kristopher.benson@noaa.gov

gulfspillrestoration.noaa.gov/restoration-areas/open-ocean