NCCOS | NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Analysis of Floating Oil Under UV Light at Different Environmental Conditions

Emily C. Pisarski and Edward F. Wirth

NOAA/NOS/NCCOS; Stressor Detection and Impacts Division, Charleston, SC

Introduction

- Recent shift in oil spill weathering paradigm
- Photo-oxidation still not well understood
 - Formation of oxygenated / more polar species
 - More soluble species?
 - What are these species?
- Lab studies show enhanced toxicity to estuarine organisms with thin oil sheens + UV exposure
- If we can better understand the photo-oxidation of oil, we can better understand the fate and transport of spilled oil in the environment

Before DWH

Ward and Overton 2020

Study Objectives

- How do the chemical and physical properties of oil change under different environmental conditions?
 - Ultraviolet Light (UV-A)
 - Temperature (10, 21, and 30°C)

NCCOS | NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Methodology

- Environmental chamber
 - UV-A and fluorescent (no UV) light treatments
- 7 d test exposure; 12 h light / 12 h dark photoperiod
 - At 10, 21 and 30°C
 - Avg. UV intensity at 380nm: 0.058 ± 0.004 mW/cm² ≈ spring day in Southern US
- Oil (Louisiana Sweet Crude; LSC)
 - ~33 μ m slick applied to 100 ml seawater, orbital shaker (70 rpm)
 - 3 reps/treatment/time point (oil + water)

NCCOS | NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Methodology

- Chemical / Physical measurements at 6h, 24h, 48h and 7d
- Photography (physical measurements)
- PAHs, TEH, hopanes / steranes (biomarkers)
 - L/L extraction + silica SPE, GC/MS

 $H_0 = 17\alpha(H)21\beta(H)$ hopane concentration in fresh oil

 $A_0 = PAH$ concentration in fresh oil

 $H_t = 17\alpha(H)21\beta(H)$ hopene concentration at desired time point/treatment

 $A_t = PAH$ concentration at desired time point/treatment

Note of interest

- The greatest difference in % loss tends to occur ~48h, not at 7d
- We think this may be related to when the tar ball forms in the UV treatment
- The tar ball has this "skin-like" feature surrounding it which likely slows weathering

SCIENCE SERVING COASTAL COMMUNITIES

at 48h

Conclusions

- UV light is a factor in tar ball formation
- Physical changes
 - UV \rightarrow tar ball; no UV \rightarrow sheen-like
- Chemical changes
 - TEH and Biomarkers: UV \approx no UV
 - PAHs: high molecular weight / more alkylated PAHs affected by UV light
 - LSC oil composition ~1-2% PAHs; vast majority are low molecular weight

NCCOS | NATIONAL CENTERS FOR COASTAL OCFAN SCIENCE

Future Directions

Additional Questions / Planned Experiments

- Does tar ball formation happen with other oil types?
 - Repeat exposure with Fuel Oil #2
- What products are being formed during photolysis?
 - Polar scans, non target analysis (LC-MS/MS, FTIR)
 - SARA analysis
- Does the time at which tar balls form differ between temperatures?
 - Add sampling time points 48 h 7 d
 - Use ImageJ to analyze photos
- Does UV intensity affect tar ball formation?
- How do the bulk physical properties of oil change when exposed to UV light?
 - e.g., density, viscosity
- Is the chemistry of the underlying water changing?
 - pH, DO, chemical composition

Natalie Renier, Woods Hole Oceanographic Institution